

ZODB - a native object database for Python

Because ZODB is an object database:

	no separate language for database operations

	very little impact on your code to make objects persistent

	no database mapper that partially hides the database.

Using an object-relational mapping is not like using an object database.

	almost no seam between code and database.

	Relationships between objects are handled very naturally, supporting
complex object graphs without joins.

Check out the Tutorial!

ZODB runs on Python 2.7 or Python 3.4 and above. It also runs on PyPy.

Learning more

	Introduction

	Tutorial

	ZODB programming guide

	ZODB articles

	Conflict Resolution

	Collabortation Diagrams

	Cross-Database References

	Event support

	Historical Connections

	Persistent Classes

	ZODB Utilities Module

	Developers notes

	Change History

	Reference Documentation

	The ZODB Book (in progress) [http://zodb.readthedocs.org/en/latest/]

Downloads

ZODB is distributed through the Python Package Index [https://pypi.org/project/ZODB/].

You can install the ZODB using pip command:

$ pip install ZODB

Community and contributing

Discussion occurs on the ZODB mailing list [https://groups.google.com/forum/#!forum/zodb]. (And for the
transaction system on the transaction list [https://groups.google.com/forum/#!forum/python-transaction])

Bug reporting and feature requests are submitted through github issue
trackers for various ZODB components:

	ZODB repository [https://github.com/zopefoundation/zodb]

	persistent documentation [https://persistent.readthedocs.io/en/stable/] and its repository [https://github.com/zopefoundation/persistent].

	transaction documentation [https://transaction.readthedocs.io/en/stable/] and its repository [https://github.com/zopefoundation/transaction]

	BTrees documentation [https://btrees.readthedocs.io/en/stable/] and their repository [https://github.com/zopefoundation/BTrees]

	ZEO (client-server framework) documentation [https://zeo.readthedocs.io/en/stable/] and its repository [https://github.com/zopefoundation/ZEO]

	relstorage documentation [https://relstorage.readthedocs.io/en/latest/] and its repository [https://github.com/zodb/relstorage/]

	zodburi documentation [https://docs.pylonsproject.org/projects/zodburi/en/latest/] and its repository [https://github.com/Pylons/zodburi]

	NEO documentation [https://neo.nexedi.com/] and its repository [https://lab.nexedi.com/nexedi/neoppod/]

	readonlystorage repository [https://gitlab.com/yaal/readonlystorage]

	newt db documentation [https://newt-db.readthedocs.io/en/latest] and its repository [https://github.com/newtdb/db]

If you’d like to contribute then we’ll gladly accept work on documentation,
helping out other developers and users at the mailing list, submitting bugs,
creating proposals and writing code.

ZODB is a project managed by the Zope Foundation so you can get write access
for contributing directly - check out the foundation’s Zope Developer Information [http://docs.zope.org/developer].

Introduction

Transactions

Transactions make programs easier to reason about.

	Transactions are atomic

	Changes made in a transaction are either saved in their entirety or
not at all.

This makes error handling a lot easier. If you have an error, you
just abort the current transaction. You don’t have to worry about
undoing previous database changes.

	Transactions provide isolation

	Transactions allow multiple logical threads (threads or processes)
to access databases and the database prevents the threads from
making conflicting changes.

This allows you to scale your application across multiple threads,
processes or machines without having to use low-level locking
primitives.

You still have to deal with concurrency on some level. For
timestamp-based systems like ZODB, you may have to retry conflicting
transactions. With locking-based systems, you have to deal with
possible deadlocks.

	Transactions affect multiple objects

	Most NoSQL databases don’t have transactions. Their notions of
consistency are much weaker, typically applying to single documents.
There can be good reasons to use NoSQL databases for their extreme
scalability, but otherwise, think hard about giving up the benefits
of transactions.

ZODB transaction support:

	ACID [https://en.wikipedia.org/wiki/ACID] transactions with
snapshot isolation [https://en.wikipedia.org/wiki/Snapshot_isolation]

	Distributed transaction support using two-phase commit

This allows transactions to span multiple ZODB databases and to span
ZODB and non-ZODB databases.

Other notable ZODB features

	Database caching with invalidation

	Every database connection has a cache that is a consistent partial database
replica. When accessing database objects, data already in the cache
is accessed without any database interactions. When data are
modified, invalidations are sent to clients causing cached objects
to be invalidated. The next time invalidated objects are accessed
they’ll be loaded from the database.

Applications don’t have to invalidate cache entries. The database
invalidates cache entries automatically.

	Pluggable layered storage

	ZODB has a pluggable storage architecture. This allows a variety of
storage schemes including memory-based, file-based and distributed
(client-server) storage. Through storage layering, storage
components provide compression, encryption, replication and more.

	Easy testing

	Because application code rarely has database logic, it can
usually be unit tested without a database.

ZODB provides in-memory storage implementations as well as
copy-on-write layered “demo storage” implementations that make testing
database-related code very easy.

	Garbage collection

	Removal of unused objects is automatic, so application developers
don’t have to worry about referential integrity.

	Binary large objects, Blobs

	ZODB blobs are database-managed files. This can be especially
useful when serving media. If you use AWS, there’s a Blob
implementation that stores blobs in S3 and caches them on disk.

	Time travel

	ZODB storages typically add new records on write and remove old
records on “pack” operations. This allows limited time travel, back
to the last pack time. This can be very useful for forensic
analysis.

When should you use ZODB?

	You want to focus on your application without writing a lot of database code.

	ZODB provides highly transparent persistence.

	Your application has complex relationships and data structures.

	In relational databases you have to join tables to model complex
data structures and these joins can be tedious and expensive. You
can mitigate this to some extent in databases like Postgres by using
more powerful data types like arrays and JSON columns, but when
relationships extend across rows, you still have to do joins.

In NoSQL databases, you can model complex data structures with
documents, but if you have relationships across documents, then you
have to do joins and join capabilities in NoSQL databases are
typically far less powerful and transactional semantics typically don’t
cross documents, if they exist at all.

In ZODB, you can make objects as complex as you want and cross
object relationships are handled with Python object references.

	You access data through object attributes and methods.

	If your primary object access is search, then other database
technologies might be a better fit.

ZODB has no query language other than Python. It’s primary support
for search is through mapping objects called BTrees. People have
build higher-level search APIs on top of ZODB. These work well
enough to support some search.

	You read data a lot more than you write it.

	ZODB caches aggressively, and if your working set fits (or mostly
fits) in memory, performance is very good because it rarely has to
touch the database server.

If your application is very write heavy (e.g. logging), then you’re
better off using something else. Sometimes, you can use a database
suitable for heavy writes in combination with ZODB.

	Need to test logic that uses your database.

	ZODB has a number of storage implementations, including layered
in-memory implementations that make testing very easy.

A database without an in-memory storage option can make testing very
complicated.

When should you not use ZODB?

	You have very high write volume.

ZODB can commit thousands of transactions per second with suitable
storage configuration and without conflicting changes.

Internal search indexes can lead to lots of conflicts, and can
therefore limit write capacity. If you need high write volume and
search beyond mapping access, consider using external indexes.

	You need to use non-Python tools to access your database.

especially tools designed to work with relational databases

Newt DB addresses these issues to a significant degree. See
http://newtdb.org.

How does ZODB scale?

Not as well as many technologies, but some fairly large applications
have been built on ZODB.

At Zope Corporation, several hundred newspaper content-management
systems and web sites were hosted using a multi-database configuration
with most data in a main database and a catalog database. The
databases had several hundred gigabytes of ordinary database records
plus multiple terabytes of blob data.

ZODB is mature

ZODB is very mature. Development started in 1996 and it has been used
in production in thousands of applications for many years.

ZODB is in heavy use in the Pyramid [http://www.pylonsproject.org/]
and Plone [https://plone.org/] communities and in many other
applications.

Tutorial

This tutorial is intended to guide developers with a step-by-step introduction
of how to develop an application which stores its data in the ZODB.

Introduction

To save application data in ZODB, you’ll generally define classes that
subclass persistent.Persistent:

account.py

import persistent

class Account(persistent.Persistent):

 def __init__(self):
 self.balance = 0.0

 def deposit(self, amount):
 self.balance += amount

 def cash(self, amount):
 assert amount < self.balance
 self.balance -= amount

This code defines a simple class that holds the balance of a bank
account and provides two methods to manipulate the balance: deposit
and cash.

Subclassing Persistent provides a number of features:

	The database will automatically track object changes made by setting
attributes 1.

	Data will be saved in its own database record.

You can save data that doesn’t subclass Persistent, but it will be
stored in the database record of whatever persistent object
references it.

	Objects will have unique persistent identity.

Multiple objects can refer to the same persistent object and they’ll
continue to refer to the same object even after being saved
and loaded from the database.

Non-persistent objects are essentially owned by their containing
persistent object and if multiple persistent objects refer to the
same non-persistent subobject, they’ll (eventually) get their own
copies.

Note that we put the class in a named module. Classes aren’t stored
in the ZODB 2. They exist on the file system and
their names, consisting of their class and module names, are stored in
the database. It’s sometimes tempting to create persistent classes in
scripts or in interactive sessions, but if you do, then their module
name will be '__main__' and you’ll always have to define them that
way.

Installation

Before being able to use ZODB we have to install it. A common way to
do this is with pip:

$ pip install ZODB

Creating Databases

When a program wants to use the ZODB it has to establish a connection,
like any other database. For the ZODB we need 3 different parts: a
storage, a database and finally a connection:

import ZODB, ZODB.FileStorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
db = ZODB.DB(storage)
connection = db.open()
root = connection.root

ZODB has a pluggable storage framework. This means there are a
variety of storage implementations to meet different needs, from
in-memory databases, to databases stored in local files, to databases
on remote database servers, and specialized databases for compression,
encryption, and so on. In the example above, we created a database
that stores its data in a local file, using the FileStorage
class.

Having a storage, we then use it to instantiate a database, which we
then connect to by calling open(). A process with multiple
threads will often have multiple connections to the same database,
with different threads having different connections.

There are a number of convenient shortcuts you can use for some of the
commonly used storages:

	You can pass a file name to the DB constructor to have it construct
a FileStorage for you:

db = ZODB.DB('mydata.fs')

You can pass None to create an in-memory database:

memory_db = ZODB.DB(None)

	If you’re only going to use one connection, you can call the
connection function:

connection = ZODB.connection('mydata.fs')
memory_connection = ZODB.connection(None)

Storing objects

To store an object in the ZODB we simply attach it to any other object
that already lives in the database. Hence, the root object functions
as a boot-strapping point. The root object is meant to serve as a
namespace for top-level objects in your database. We could store
account objects directly on the root object:

import account

Probably a bad idea:
root.account1 = account.Account()

But if you’re going to store many objects, you’ll want to use a
collection object 3:

import account, BTrees.OOBTree

root.accounts = BTrees.OOBTree.BTree()
root.accounts['account-1'] = Account()

Another common practice is to store a persistent object in the root of
the database that provides an application-specific root:

root.accounts = AccountManagementApplication()

That can facilitate encapsulation of an application that shares a
database with other applications. This is a little bit like using
modules to avoid namespace colisions in Python programs.

Containers and search

BTrees provide the core scalable containers and indexing facility for
ZODB. There are different families of BTrees. The most general are
OOBTrees, which have object keys and values. There are specialized
BTrees that support integer keys and values. Integers can be stored
more efficiently, and compared more quickly than objects and they’re
often used as application-level object identifiers. It’s critical,
when using BTrees, to make sure that its keys have a stable ordering.

ZODB doesn’t provide a query engine. The primary way to access
objects in ZODB is by traversing (accessing attributes or items, or
calling methods) other objects. Object traversal is typically much
faster than search.

You can use BTrees to build indexes for efficient search, when
necessary. If your application is search centric, or if you prefer to
approach data access that way, then ZODB might not be the best
technology for you. Before you turn your back on the ZODB, it
may be worth checking out the up-and-coming Newt DB 6 project,
which combines the ZODB with Postgresql for indexing, search and access
from non-Python applications.

Transactions

You now have objects in your root object and in your database.
However, they are not permanently stored yet. The ZODB uses
transactions and to make your changes permanent, you have to commit
the transaction:

import transaction

transaction.commit()

Now you can stop and start your application and look at the root object again,
and you will find the data you saved.

If your application makes changes during a transaction and finds that it does
not want to commit those changes, then you can abort the transaction and have
the changes rolled back 4 for you:

transaction.abort()

Transactions are a very powerful way to protect the integrity of a
database. Transactions have the property that all of the changes made
in a transaction are saved, or none of them are. If in the midst of a
program, there’s an error after making changes, you can simply abort
the transaction (or not commit it) and all of the intermediate changes
you make are automatically discarded.

Memory Management

ZODB manages moving objects in and out of memory for you. The unit of
storage is the persistent object. When you access attributes of a
persistent object, they are loaded from the database automatically, if
necessary. If too many objects are in memory, then objects used least
recently are evicted 5. The maximum number of objects or
bytes in memory is configurable.

Summary

You have seen how to install ZODB and how to open a database in your
application and to start storing objects in it. We also touched the
two simple transaction commands: commit and abort. The
reference documentation contains sections with more information on the
individual topics.

	1

	You can manually mark an object as changed by setting its
_p_changed__ attribute to True. You might do this if you
update a subobject, such as a standard Python list or set,
that doesn’t subclass Persistent.

	2

	Actually, there is semi-experimental support for storing classes in
the database, but applications rarely do this.

	3

	The root object is a fairy simple persistent object that’s stored
in a single database record. If you stored many objects in it,
its database record would become very large, causing updates to be
inefficient and causing memory to be used ineffeciently.

Another reason not to store items directly in the root object is
that doing so would make adding a second collection of objects
later awkward.

	4

	A caveat is that ZODB can only roll back changes to objects that
have been stored and committed to the database. Objects not
previously committed can’t be rolled back because there’s no
previous state to roll back to.

	5

	Objects aren’t actually evicted, but their state is released, so
they take up much less memory and any objects they referenced can
be removed from memory.

	6

	Here is an overview of the Newt DB architecture: http://www.newtdb.org/en/latest/how-it-works.html

ZODB programming guide

This guide consists of a collection of topics that should be of
interest to most developers. They’re provided in order of importance,
which is also an order from least to most advanced, but they can be
read in any order.

If you haven’t yet, you should read the Tutorial.

	Installing and running ZODB
	Installation

	Configuration

	Using databases: connections

	Writing persistent objects
	Access and modification

	Rules of persistence

	Properties

	Special attributes

	Object storage and management

	You can’t change your mind in subclassing persistent

	Schema migration

	Object life cycle states and special attributes (advanced)

	Things you can do, but need to carefully consider (advanced)

	Links

	Transactions and concurrency
	Using transactions

	ZODB and atomicity

	Concurrency, threads and processes

Installing and running ZODB

This topic discusses some boring nitty-gritty details needed to
actually run ZODB.

Installation

Installation of ZODB is pretty straightforward using Python’s
packaging system. For example, using pip:

pip install ZODB

You may need additional optional packages, such as ZEO [https://pypi.org/project/ZEO/] or RelStorage [https://pypi.org/project/RelStorage/], depending your deployment
choices.

Configuration

You can set up ZODB in your application using either Python, or
ZODB’s configuration language. For simple database setup, and
especially for exploration, the Python APIs are sufficient.

For more complex configurations, you’ll probably find ZODB’s
configuration language easier to use.

To understand database setup, it’s important to understand ZODB’s
architecture. ZODB separates database functionality
from storage concerns. When you create a database object,
you specify a storage object for it to use, as in:

import ZODB, ZODB.FileStorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
db = ZODB.DB(storage)

So when you define a database, you’ll also define a storage. In the
example above, we define a file storage and then use it to define
a database.

Sometimes, storages are created through composition. For example, if
we want to save space, we could layer a ZlibStorage
1 over the file storage:

import ZODB, ZODB.FileStorage, zc.zlibstorage

storage = ZODB.FileStorage.FileStorage('mydata.fs')
compressed_storage = zc.zlibstorage.ZlibStorage(storage)
db = ZODB.DB(compressed_storage)

ZlibStorage [https://pypi.org/project/zc.zlibstorage/]
compresses database records 2.

Python configuration

To set up a database with Python, you’ll construct a storage using the
storage APIs, and then pass the
storage to the DB class to create a database, as shown
in the examples in the previous section.

The DB class also accepts a string path name as its
storage argument to automatically create a file storage. You can also
pass None as the storage to automatically use a
MappingStorage, which is convenient when
exploring ZODB:

db = ZODB.DB(None) # Create an in-memory database.

Text configuration

ZODB supports a text-based configuration language. It uses a syntax
similar to Apache configuration files. The syntax was chosen to be
familiar to site administrators.

ZODB’s text configuration uses ZConfig [https://pypi.org/project/ZConfig/]. You can use ZConfig to
create your application’s configuration, but it’s more common to
include ZODB configuration strings in their own files or embedded in
simpler configuration files, such as configarser [https://docs.python.org/3/library/configparser.html#module-configparser]
files.

A database configuration string has a zodb section wrapping a
storage section, as in:

<zodb>
 cache-size-bytes 100MB
 <mappingstorage>
 </mappingstorage>
</zodb>

In the example above, the mappingstorage section defines the storage used
by the database.

To create a database from a string, use
ZODB.config.databaseFromString():

>>> import ZODB.config
>>> db = ZODB.config.databaseFromString(snippet)

To load databases from file names or URLs, use
ZODB.config.databaseFromURL().

URI-based configuration

Another database configuration option is provided by the zodburi [https://pypi.org/project/zodburi/] package. See:
http://docs.pylonsproject.org/projects/zodburi. It’s less powerful
than the Python or text configuration options, but allows
configuration to be reduced to a single URI and handles most cases.

Using databases: connections

Once you have a database, you need to get a database connection to do
much of anything. Connections take care of loading and saving objects
and manage object caches. Each connection has its own cache
3.

Getting connections

Amongst 4 the common ways of getting a connection:

	db.open()

	The database open() method opens a
connection, returning a connection object:

>>> conn = db.open()

It’s up to the application to call
close() when the application is
done using the connection.

If changes are made, the application commits transactions to make them permanent.

	db.transaction()

	The database transaction() method
returns a context manager that can be used with the python with
statement [https://docs.python.org/3/reference/compound_stmts.html#grammar-token-with_stmt]
to execute a block of code in a transaction:

with db.transaction() as connection:
 connection.root.foo = 1

In the example above, we used as connection to get the database
connection used in the variable connection.

	some_object._p_jar

	For code that’s already running in the context of an open
connection, you can get the current connection as the _p_jar
attribute of some persistent object that was accessed via the
connection.

Getting objects

Once you have a connection, you access objects by traversing the
object graph from the root object.

The database root object is a mapping object that holds the top level
objects in the database. There should only be a small number of
top-level objects (often only one). You can get the root object by calling a
connection’s root attribute:

>>> root = conn.root()
>>> root
{'foo': 1}
>>> root['foo']
1

For convenience 5, you can also get top-level
objects by accessing attributes of the connection root object:

>>> conn.root.foo
1

Once you have a top-level object, you use its methods, attributes, or
operations to access other objects and so on to get the objects you
need. Often indexing data structures like BTrees [https://pythonhosted.org/BTrees/] are used to
make it possible to search objects in large collections.

	1

	zc.zlibstorage [https://pypi.org/project/zc.zlibstorage/] is an optional
package that you need to install separately.

	2

	ZlibStorage uses the zlib [https://docs.python.org/3/library/zlib.html#module-zlib] standard module, which
uses the zlib library [http://www.zlib.net/].

	3

	ZODB can be very efficient at caching data
in memory, especially if your working set [https://en.wikipedia.org/wiki/Working_set] is small enough to
fit in memory, because the cache is simply an object tree and
accessing a cached object typically requires no database
interaction. Because each connection has its own cache,
connections can be expensive, depending on their cache sizes. For
this reason, you’ll generally want to limit the number of open
connections you have at any one time. Connections are pooled, so
opening a connection is inexpensive.

	4

	https://www.youtube.com/watch?v=7WJXHY2OXGE

	5

	The ability to access top-level objects of the
database as root attributes is a recent convenience. Originally,
the root() method was used to access the root object which was
then accessed as a mapping. It’s still potentially useful to
access top-level objects using the mapping interface if their names
aren’t valid attribute names.

Writing persistent objects

In the Tutorial, we discussed the basics of
implementing persistent objects by subclassing
persistent.Persistent. This is probably enough for 80% of
persistent-object classes you write, but there are some other aspects
of writing persistent classes you should be aware of.

Access and modification

Two of the main jobs of the Persistent base class are to detect
when an object has been accessed and when it has been modified. When
an object is accessed, its state may need to be loaded from the
database. When an object is modified, the modification needs to be
saved if a transaction is committed.

Persistent detects object accesses by hooking into object
attribute access and update. In the case of object update, there
may be other ways of modifying state that we need to make provision for.

Rules of persistence

When implementing persistent objects, be aware that an object’s
attributes should be :

	immutable (such as strings or integers),

	persistent (subclass Persistent), or

	You need to take special precautions.

If you modify a non-persistent mutable value of a persistent-object
attribute, you need to mark the persistent object as changed yourself
by setting _p_changed to True:

import persistent

class Book(persistent.Persistent):

 def __init__(self, title):
 self.title = title
 self.authors = []

 def add_author(self, author):
 self.authors.append(author)
 self._p_changed = True

In this example, Book objects have an authors object that’s a
regular Python list, so it’s mutable and non-persistent. When we add
an author, we append it to the authors attribute’s value. Because
we didn’t set an attribute on the book, it’s not marked as changed, so
we set _p_changed ourselves.

Using standard Python lists, dicts, or sets is a common thing to do,
so this pattern of setting _p_changed is common.

Let’s look at some alternatives.

Using tuples for small sequences instead of lists

If objects contain sequences that are small or that don’t change
often, you can use tuples instead of lists:

import persistent

class Book(persistent.Persistent):

 def __init__(self, title):
 self.title = title
 self.authors = ()

 def add_author(self, author):
 self.authors += (author,)

Because tuples are immutable, they satisfy the rules of persistence
without any special handling.

Using persistent data structures

The persistent package provides persistent versions of list
and dict, namely persistent.list.PersistentList and
persistent.mapping.PersistentMapping. We can update our example to
use PersistentList:

import persistent
import persistent.list

class Book(persistent.Persistent):

 def __init__(self, title):
 self.title = title
 self.authors = persistent.list.PersistentList()

 def add_author(self, author):
 self.authors.append(author)

Note that in this example, when we added an author, the book itself
didn’t change, but the authors attribute value did. Because
authors is a persistent object, it’s stored in a separate database
record from the book record and is managed by ZODB independent of the
management of the book.

In addition to PersistentList and PersistentMapping, general
persistent data structures are provided by the BTrees [https://pythonhosted.org/BTrees/] package,
most notably BTree and TreeSet objects. Unlike
PersistentList and PersistentMapping, BTree and
TreeSet objects are scalable and can easily hold millions of
objects, because their data are spread over many subobjects.

It’s generally better to use BTree objects than
PersistentMapping objects, because they’re scalable and because
they handle conflicts better. TreeSet
objects are the only ZODB-provided persistent set implementation.
BTree and TreeSets come in a number of families provided via
different modules and differ in their internal implementations:

	Module

	Key type

	Value Type

	BTrees.OOBTree

	object

	object

	BTrees.IOBTree

	integer

	Object

	BTrees.OIBTree

	object

	integer

	BTrees.IIBTree

	integer

	integer

	BTrees.IFBTree

	integer

	float

	BTrees.LOBTree

	64-bit integer

	Object

	BTrees.OLBTree

	object

	64-bit integer

	BTrees.LLBTree

	64-bit integer

	64-bit integer

	BTrees.LFBTree

	64-bit integer

	float

Here’s a version of the example that uses a TreeSet:

import persistent
from BTrees.OOBTree import TreeSet

class Book(persistent.Persistent):

 def __init__(self, title):
 self.title = title
 self.authors = TreeSet()

 def add_author(self, author):
 self.authors.add(author)

If you’re going to use custom classes as keys in a BTree or
entries in a TreeSet, they must provide a total ordering [https://pythonhosted.org/BTrees/#total-ordering-and-persistence].
The builtin python str class is always safe to use as BTree key. You
can use zope.keyreference [https://pypi.org/project/zope.keyreference/] to treat arbitrary
persistent objects as totally orderable based on their persistent
object identity.

Scalable sequences are a bit more challenging. The zc.blist [https://pypi.org/project/zc.blist/] package provides a scalable
list implementation that works well for some sequence use cases.

Properties

If you implement some attributes using Python properties (or other
types of descriptors), they are treated just like any other attributes
by the persistence machinery. When you set an attribute through a
property, the object is considered changed, even if the property
didn’t actually modify the object state.

Special attributes

There are some attributes that are treated specially.

Attributes with names starting with _p_ are reserved for use by
the persistence machinery and by ZODB. These include (but aren’t
limited to):

	_p_changed

	The _p_changed attribute has the value None if the
object is a ghost, True if it’s changed, and
False if it’s not a ghost and not changed.

	_p_oid

	The object’s unique id in the database.

	_p_serial

	The object’s revision identifier also know as the object serial
number, also known as the object transaction id. It’s a timestamp
and if not set has the value 0 encoded as string of 8 zero bytes.

	_p_jar

	The database connection the object was accessed through. This is
commonly used by database-aware application code to get hold of an
object’s database connection.

An object’s __dict__ attribute is treated specially in that
getting it doesn’t cause an object’s state to be loaded. It may have
the value None rather than a dictionary for ghosts.

Volatile Attributes

Attributes with names starting with _v_ are volatile,
they are never serialized and not saved to the database.
They are useful for caching data that can be computed from other data[#cache]_.

Volatile attributes are local to a specific active object in memory and
thus to a specific connection. If an object is removed from the connection
cache the volatile attribute is lost.

Setting a volatile attribute does not cause an object to be considered to
be modified.

Object storage and management

Every persistent object is stored in its own database record. Some
storages maintain multiple object revisions, in which case each
persistent object is stored in its own set of records. Data for
different persistent objects are stored separately.

The database manages each object separately, according to a life
cycle.

This is important when considering how to distribute data across your
objects. If you use lots of small persistent objects, then more
objects may need to be loaded or saved and you may incur more memory
overhead. On the other hand, if objects are too big, you may load or
save more data than would otherwise be needed.

You can’t change your mind in subclassing persistent

Currently, you can’t change your mind about whether a class is
persistent (subclasses persistent.Persistent) or not. If you save
objects in a database who’s classes subclass persistent.Persistent,
you can’t change your mind later and make them non-persistent, and the
other way around. This may be a bug or misfeature [https://github.com/zopefoundation/ZODB/issues/99].

Schema migration

Object requirements and implementations tend to evolve over time.
This isn’t a problem for objects that are short lived, but persistent
objects may have lifetimes that extend for years. There needs to be
some way of making sure that state for an older object schema can
still be loaded into an object with the new schema.

Adding attributes

Perhaps the commonest schema change is to add attributes. This is
usually accomplished easily by adding a default value in a class
definition:

class Book(persistent.Persistent):

 publisher = 'UNKNOWN'

 def __init__(self, title, publisher):
 self.title = title
 self.publisher = publisher
 self.authors = TreeSet()

 def add_author(self, author):
 self.authors.add(author)

Removing attributes

Removing attributes generally doesn’t require any action, assuming
that their presence in older objects doesn’t do any harm.

Renaming/moving classes

The easiest way to handle renaming or moving classes is to leave
aliases for the old name. For example, if we have a class,
library.Book, and want to move it to catalog.Publication, we
can keep a library module that contains:

from catalog import Publication as Book # XXX deprecated name

A downside of this approach is that it clutters code and may even
cause us to keep modules solely to hold aliases. (zope.deferredimport [http://zopedeferredimport.readthedocs.io/en/latest/narrative.html]
can help with this by making these aliases a little more efficient and
by generating deprecation warnings.)

Migration scripts

If the simple approaches above aren’t enough, then migration scripts
can be used. How these scripts are written is usually application
dependent, as the application usually determines where objects of a
given type reside in the database. (There are also some low-level
interfaces for iterating over all of the objects of a database, but
these are usually impractical for large databases.)

An improvement to running migration scripts manually is to use a
generational framework like zope.generations [https://pypi.org/project/zope.generations/]. With a generational
framework, each migration is assigned a migration number and the
number is recorded in the database as each migration is run. This is
useful because remembering what migrations are needed is automated.

Upgrading multiple clients without down time

Production applications typically have multiple clients for
availability and load balancing. This means an active application may
be committing transactions using multiple software and schema
versions. In this situation, you may need to plan schema migrations
in multiple steps:

	Upgrade software on all clients to a version that works with the old and new
version of the schema and that writes data using the old schema.

	Upgrade software on all clients to a version that works with the old and new
version of the schema and that writes data using the new schema.

	Migrate objects written with the old schema to the new schema.

	Remove support for the old schema from the software.

Object life cycle states and special attributes (advanced)

Persistent objects typically transition through a collection of
states. Most of the time, you don’t need to think too much about this.

	Unsaved

	When an object is created, it’s said to be in an unsaved state
until it’s associated with a database.

	Added

	When an unsaved object is added to a database, but hasn’t been
saved by committing a transaction, it’s in the added state.

Note that most objects are added implicitly by being set as
subobjects (attribute values or items) of objects already in the
database.

	Saved

	When an object is added and saved through a transaction commit, the
object is in the saved state.

	Changed

	When a saved object is updated, it enters the changed state to
indicate that there are changes that need to be committed. It
remains in this state until either:

	The current transaction is committed, and the object transitions to
the saved state, or

	The current transaction is aborted, and the object transitions to
the ghost state.

	Ghost

	An object in the ghost state is an empty shell. It has no
state. When it’s accessed, its state will be loaded automatically,
and it will enter the saved state. A saved object can become a
ghost if it hasn’t been accessed in a while and the database
releases its state to make room for other objects. A changed
object can also become a ghost if the transaction it’s modified in is
aborted.

An object that’s loaded from the database is loaded as a
ghost. This typically happens when the object is a subobject of
another object who’s state is loaded.

We can interrogate and control an object’s state, although somewhat
indirectly. To do this, we’ll look at some special persistent-object
attributes, described in Special attributes, above.

Let’s look at some state transitions with an example. First, we create
an unsaved book:

>>> book = Book("ZODB")
>>> from ZODB.utils import z64
>>> book._p_changed, bool(book._p_oid)
(False, False)

We can tell that it’s unsaved because it doesn’t have an object id, _p_oid.

If we add it to a database:

>>> import ZODB
>>> connection = ZODB.connection(None)
>>> connection.add(book)
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, True)

We know it’s added because it has an oid, but its serial (object
revision timestamp), _p_serial, is the special zero value, and it’s
value for _p_changed is False.

If we commit the transaction that added it:

>>> import transaction
>>> transaction.commit()
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, False)

We see that the object is in the saved state because it has an object
id and serial, and is unchanged.

Now if we modify the object, it enters the changed state:

>>> book.title = "ZODB Explained"
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(True, True, False)

If we abort the transaction, the object becomes a ghost:

>>> transaction.abort()
>>> book._p_changed, bool(book._p_oid)
(None, True)

We can see it’s a ghost because _p_changed is None.
(_p_serial isn’t meaningful for ghosts.)

If we access the object, it will be loaded into the saved state, which
is indicated by a false _p_changed and an object id and non-zero serial.

>>> book.title
'ZODB'
>>> book._p_changed, bool(book._p_oid), book._p_serial == z64
(False, True, False)

Note that accessing _p_ attributes didn’t cause the object’s state
to be loaded.

We’ve already seen how modifying _p_changed can cause an object to
be marked as modified. We can also use it to make an object into a
ghost:

>>> book._p_changed = None
>>> book._p_changed, bool(book._p_oid)
(None, True)

Things you can do, but need to carefully consider (advanced)

While you can do anything with a persistent subclass that you can with
a normal subclass, certain things have additional implications for
persistent objects. These often show up as performance issues, or the
result may become hard to maintain.

Implement __eq__ and __hash__

When you store an entry into a Python dict (or the persistent
variant PersistentMapping, or a set or frozenset), the
key’s __eq__ and __hash__ methods are used to determine where
to store the value. Later they are used to look it up via in or
__getitem__.

When that dict is later loaded from the database, the internal
storage is rebuilt from scratch. This means that every key has its
__hash__ method called at least once, and may have its __eq__
method called many times.

By default, every object, including persistent objects, inherits an
implementation of __eq__ and __hash__ from object [https://docs.python.org/3/library/functions.html#object].
These default implementations are based on the object’s identity,
that is, its unique identifier within the current Python process.
Calling them, therefore, is very fast, even on ghosts, and doesn’t cause a ghost to load its state.

If you override __eq__ and __hash__ in a custom persistent
subclass, however, when you use instances of that class as a key
in a dict, then the instance will have to be unghosted before it
can be put in the dictionary. If you’re building a large dictionary
with many such keys that are ghosts, you may find that loading all the
object states takes a considerable amount of time. If you were to
store that dictionary in the database and load it later, all the
keys will have to be unghosted at the same time before the dictionary
can be accessed, again, possibly taking a long time.

For example, a class that defines __eq__ and __hash__ like this:

class BookEq(persistent.Persistent):

 def __init__(self, title):
 self.title = title
 self.authors = ()

 def add_author(self, author):
 self.authors += (author,)

 def __eq__(self, other):
 return self.title == other.title and self.authors == other.authors

 def __hash__(self):
 return hash((self.title, self.authors))

is going to be much slower to use as a key in a persistent dictionary,
or in a new dictionary when the key is a ghost, than the class that
inherits identity-based __eq__ and __hash__.

There are some alternatives:

	Avoiding the use of persistent objects as keys in dictionaries or
entries in sets sidesteps the issue.

	If your application can tolerate identity based comparisons, simply
don’t implement the two methods. This means that objects will be
compared only by identity, but because persistent objects are
persistent, the same object will have the same identity in each
connection, so that often works out.

It is safe to remove __eq__ and __hash__ methods from a
class even if you already have dictionaries in a database using
instances of those classes as keys.

	Make your classes orderable [https://pythonhosted.org/BTrees/#total-ordering-and-persistence]
and use them as keys in a BTree or entries in a TreeSet instead of a
dictionary or set. Even though your custom comparison methods will
have to unghost the objects, the nature of a BTree means that only a
small number of objects will have to be loaded in most cases.

	Any persistent object can be wrapped in a zope.keyreferenece to
make it orderable and hashable based on persistent identity. This
can be an alternative for some dictionaries if you can’t alter the
class definition but can accept identity comparisons in some
dictionaries or sets. You must remember to wrap all keys, though.

Implement __getstate__ and __setstate__

When an object is saved in a database, its __getstate__ method is
called without arguments to get the object’s state. The default
implementation simply returns a copy of an object’s instance
dictionary. (It’s a little more complicated for objects with slots.)

An object’s state is loaded by loading the state from the database and
passing it to the object’s __setstate__ method. The default
implementation expects a dictionary, which it uses to populate the
object’s instance dictionary.

Early on, we thought that overriding these methods would be useful for
tasks like providing more efficient state representations or for
schema migration, but we found that
the result was to make object implementations brittle and/or complex
and the benefit usually wasn’t worth it.

Implement __getattr__, __getattribute__, or __setattribute__

This is something extremely clever people might attempt, but it’s
probably never worth the bother. It’s possible, but it requires such
deep understanding of persistence and internals that we’re not even
going to document it. :)

Links

persistent.Persistent [http://persistent.readthedocs.io/en/latest/index.html] provides
additional documentation on the Persistent base class.

The zc.blist [https://pypi.org/project/zc.blist/] package provides
a scalable sequence implementation for many use cases.

The zope.cachedescriptors [https://pypi.org/project/zope.cachedescriptors/] package
provides descriptor implementations that facilitate implementing
caching attributes, especially _v_ volatile attributes.

The zope.deferredimport [http://zopedeferredimport.readthedocs.io/en/latest/narrative.html]
package provides lazy import and support for deprecating import
location, which is helpful when moving classes, especially persistent
classes.

The zope.generations [https://pypi.org/project/zope.generations/] package provides a
framework for managing schema-migration scripts.

	1

	The zope.cachedescriptors [https://pypi.org/project/zope.cachedescriptors/] package
provides some descriptors that help implement attributes that cache
data.

Transactions and concurrency

Contents

	Transactions and concurrency

	Using transactions

	Explicit transaction managers

	Context managers

	Getting a connection’s transaction manager

	Connection isolation

	Conflict errors

	Retrying transactions

	Conflict resolution

	ZODB and atomicity

	Partial transaction error recovery using savepoints

	Concurrency, threads and processes

	Using multiple processes

Transactions [https://en.wikipedia.org/wiki/Database_transaction]
are a core feature of ZODB. Much has been written about transactions,
and we won’t go into much detail here. Transactions provide two core
benefits:

	Atomicity

	When a transaction executes, it succeeds or fails completely. If
some data are updated and then an error occurs, causing the
transaction to fail, the updates are rolled back automatically. The
application using the transactional system doesn’t have to undo
partial changes. This takes a significant burden from developers
and increases the reliability of applications.

	Concurrency

	Transactions provide a way of managing concurrent updates to data.
Different programs operate on the data independently, without having
to use low-level techniques to moderate their access. Coordination
and synchronization happen via transactions.

Using transactions

All activity in ZODB happens in the context of database connections
and transactions. Here’s a simple example:

import ZODB, transaction
db = ZODB.DB(None) # Use a mapping storage
conn = db.open()

conn.root.x = 1
transaction.commit()

In the example above, we used transaction.commit() to commit a
transaction, making the change to conn.root permanent. This is
the most common way to use ZODB, at least historically.

If we decide we don’t want to commit a transaction, we can use
abort:

conn.root.x = 2
transaction.abort() # conn.root.x goes back to 1

In this example, because we aborted the transaction, the value of
conn.root.x was rolled back to 1.

There are a number of things going on here that deserve some
explanation. When using transactions, there are three kinds of
objects involved:

	Transaction

	Transactions represent units of work. Each transaction has a beginning and
an end. Transactions provide the
ITransaction interface.

	Transaction manager

	Transaction managers create transactions and
provide APIs to start and end transactions. The transactions
managed are always sequential. There is always exactly one active
transaction associated with a transaction manager at any point in
time. Transaction managers provide the
ITransactionManager interface.

	Data manager

	Data managers manage data associated with transactions. ZODB
connections are data managers. The details of how they interact
with transactions aren’t important here.

Explicit transaction managers

ZODB connections have transaction managers associated with them when
they’re opened. When we call the database open() method
without an argument, a thread-local transaction manager is used. Each
thread has its own transaction manager. When we called
transaction.commit() above we were calling commit on the
thread-local transaction manager.

Because we used a thread-local transaction manager, all of the work in
the transaction needs to happen in the same thread. Similarly, only
one transaction can be active in a thread.

If we want to run multiple simultaneous transactions in a single
thread, or if we want to spread the work of a transaction over
multiple threads 5,
then we can create transaction managers ourselves and pass them to
open():

my_transaction_manager = transaction.TransactionManager()
conn = db.open(my_transaction_manager)
conn.root.x = 2
my_transaction_manager.commit()

In this example, to commit our work, we called commit() on the
transaction manager we created and passed to open().

Context managers

In the examples above, the transaction beginnings were
implicit. Transactions were effectively
6 created when the transaction
managers were created and when previous transactions were committed.
We can create transactions explicitly using
begin():

my_transaction_manager.begin()

A more modern 7 way to manage transaction
boundaries is to use context managers and the Python with
statement. Transaction managers are context managers, so we can use
them with the with statement directly:

with my_transaction_manager as trans:
 trans.note(u"incrementing x")
 conn.root.x += 1

When used as a context manager, a transaction manager explicitly
begins a new transaction, executes the code block and commits the
transaction if there isn’t an error and aborts it if there is an
error.

We used as trans above to get the transaction.

Databases provide the transaction() method to execute a code
block as a transaction:

with db.transaction() as conn2:
 conn2.root.x += 1

This opens a connection, assignes it its own context manager, and
executes the nested code in a transaction. We used as conn2 to
get the connection. The transaction boundaries are defined by the
with statement.

Getting a connection’s transaction manager

In the previous example, you may have wondered how one might get the
current transaction. Every connection has an associated transaction
manager, which is available as the transaction_manager attribute.
So, for example, if we wanted to set a transaction note:

with db.transaction() as conn2:
 conn2.transaction_manager.get().note(u"incrementing x again")
 conn2.root.x += 1

Here, we used the
get() method to get
the current transaction.

Connection isolation

In the last few examples, we used a connection opened using
transaction(). This was distinct from and used a
different transaction manager than the original connection. If we
looked at the original connection, conn, we’d see that it has the
same value for x that we set earlier:

>>> conn.root.x
3

This is because it’s still in the same transaction that was begun when
a change was last committed against it. If we want to see changes, we
have to begin a new transaction:

>>> trans = my_transaction_manager.begin()
>>> conn.root.x
5

ZODB uses a timestamp-based commit protocol that provides snapshot
isolation [https://en.wikipedia.org/wiki/Snapshot_isolation].
Whenever we look at ZODB data, we see its state as of the time the
transaction began.

Conflict errors

As mentioned in the previous section, each connection sees and
operates on a view of the database as of the transaction start time.
If two connections modify the same object at the same time, one of the
connections will get a conflict error when it tries to commit:

with db.transaction() as conn2:
 conn2.root.x += 1

conn.root.x = 9
my_transaction_manager.commit() # will raise a conflict error

If we executed this code, we’d get a ConflictError exception on the
last line. After a conflict error is raised, we’d need to abort the
transaction, or begin a new one, at which point we’d see the data as
written by the other connection:

>>> my_transaction_manager.abort()
>>> conn.root.x
6

The timestamp-based approach used by ZODB is referred to as an
optimistic approach, because it works best if there are no
conflicts.

The best way to avoid conflicts is to design your application so that
multiple connections don’t update the same object at the same time.
This isn’t always easy.

Sometimes you may need to queue some operations that update shared
data structures, like indexes, so the updates can be made by a
dedicated thread or process, without making simultaneous updates.

Retrying transactions

The most common way to deal with conflict errors is to catch them and
retry transactions. To do this manually involves code that looks
something like this:

max_attempts = 3
attempts = 0
while True:
 try:
 with transaction.manager:
 ... code that updates a database
 except transaction.interfaces.TransientError:
 attempts += 1
 if attempts == max_attempts:
 raise
 else:
 break

In the example above, we used transaction.manager to refer to the
thread-local transaction manager, which we then used used with the
with statement. When a conflict error occurs, the transaction
must be aborted before retrying the update. Using the transaction
manager as a context manager in the with statement takes care of this
for us.

The example above is rather tedious. There are a number of tools to
automate transaction retry. The transaction [http://zodb.readthedocs.io/en/latest/transactions.html#retrying-transactions]
package provides a context-manager-based mechanism for retrying
transactions:

for attempt in transaction.manager.attempts():
 with attempt:
 ... code that updates a database

Which is shorter and simpler 1.

For Python web frameworks, there are WSGI 2 middle-ware
components, such as repoze.tm2 [https://pypi.org/project/repoze.tm2/] that align transaction
boundaries with HTTP requests and retry transactions when there are
transient errors.

For applications like queue workers or cron jobs [https://en.wikipedia.org/wiki/Cron], conflicts can sometimes be
allowed to fail, letting other queue workers or subsequent cron-job
runs retry the work.

Conflict resolution

ZODB provides a conflict-resolution framework for merging conflicting
changes. When conflicts occur, conflict resolution is used, when
possible, to resolve the conflicts without raising a ConflictError to
the application.

Commonly used objects that implement conflict resolution are
buckets and Length objects provided by the BTree [https://pythonhosted.org/BTrees/] package.

The main data structures provided by BTrees, BTrees and TreeSets,
spread their data over multiple objects. The leaf-level objects,
called buckets, allow distinct keys to be updated without causing
conflicts 3.

Length objects are conflict-free counters that merge changes by
simply accumulating changes.

Caution

Conflict resolution weakens consistency. Resist the temptation to
try to implement conflict resolution yourself. In the future, ZODB
will provide greater control over conflict resolution, including
the option of disabling it.

It’s generally best to avoid conflicts in the first place, if possible.

ZODB and atomicity

ZODB provides atomic transactions. When using ZODB, it’s important to
align work with transactions. Once a transaction is committed, it
can’t be rolled back 4 automatically. For applications, this
implies that work that should be atomic shouldn’t be split over
multiple transactions. This may seem somewhat obvious, but the rule
can be broken in non-obvious ways. For example a Web API that splits
logical operations over multiple web requests, as is often done in
REST [https://en.wikipedia.org/wiki/Representational_state_transfer]
APIs, violates this rule.

Partial transaction error recovery using savepoints

A transaction can be split into multiple steps that can be rolled back
individually. This is done by creating savepoints. Changes in a
savepoint can be rolled back without rolling back an entire
transaction:

import ZODB
db = ZODB.DB(None) # using a mapping storage
with db.transaction() as conn:
 conn.root.x = 1
 conn.root.y = 0
 savepoint = conn.transaction_manager.savepoint()
 conn.root.y = 2
 savepoint.rollback()

with db.transaction() as conn:
 print([conn.root.x, conn.root.y]) # prints 1 0

If we executed this code, it would print 1 and 0, because while the
initial changes were committed, the changes in the savepoint were
rolled back.

A secondary benefit of savepoints is that they save any changes made
before the savepoint to a file, so that memory of changed objects can
be freed if they aren’t used later in the transaction.

Concurrency, threads and processes

ZODB supports concurrency through transactions. Multiple programs
8 can operate independently in separate transactions.
They synchronize at transaction boundaries.

The most common way to run ZODB is with each program running in its
own thread. Usually the thread-local transaction manager is used.

You can use multiple threads per transaction and you can run multiple
transactions in a single thread. To do this, you need to instantiate
and use your own transaction manager, as described in Explicit
transaction managers. To run multiple transaction managers
simultaneously in a thread, you need to use a separate transaction
manager for each transaction.

To spread a transaction over multiple threads, you need to keep in
mind that database connections, transaction managers and transactions
are not thread-safe. You have to prevent simultaneous access from
multiple threads. For this reason, using multiple threads with a
single transaction is not recommended, but it is possible with care.

Using multiple processes

Using multiple Python processes is a good way to scale an application
horizontally, especially given Python’s global interpreter lock [https://wiki.python.org/moin/GlobalInterpreterLock].

Some things to keep in mind when utilizing multiple processes:

	If using the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] module, you can’t
9 share databases or connections between
processes. When you launch a subprocess, you’ll need to
re-instantiate your storage and database.

	You’ll need to use a storage such as ZEO [https://github.com/zopefoundation/ZEO], RelStorage [http://relstorage.readthedocs.io/en/latest/], or NEO [http://www.neoppod.org/], that supports multiple processes. None
of the included storages do.

	1

	But also a bit obscure. The Python context-manager
mechanism isn’t a great fit for the transaction-retry use case.

	2

	Web Server Gateway Interface [http://wsgi.readthedocs.io/en/latest/]

	3

	Conflicts can still occur when buckets
split due to added objects causing them to exceed their maximum size.

	4

	Transactions can’t be rolled back, but they may be undone
in some cases, especially if subsequent transactions
haven’t modified the same objects.

	5

	While it’s
possible to spread transaction work over multiple threads, it’s
not a good idea. See Concurrency, threads and processes

	6

	Transactions are implicitly
created when needed, such as when data are first modified.

	7

	ZODB and the transaction package
predate context managers and the Python with statement.

	8

	We’re using program here in a fairly general
sense, meaning some logic that we want to run to
perform some function, as opposed to an operating system program.

	9

	at least not now.

ZODB articles

Contents

	An overview of the ZODB (by Laurence Rowe)
	Comparison to other database types

	Transactions

	Storage Options

	Other features

	Some best practice

	Introduction to the ZODB (by Michel Pelletier)
	A Simple Example

	Detecting Changes

	Persistent Classes

	Mutable Attributes

	A Complete Example

	Conclusion

	Advanced ZODB for Python Programmers
	Persistent-Aware Types

	Using BTrees

	Not All Objects are Persistent

	ZODB and Concurrency

	Pluggable Storages

	Resolving Conflicts

	Transactions and Subtransactions

	Conclusion

	Very old ZODB programming guide
	Introduction

	ZODB Programming

	ZEO

	Transactions and Versioning

	Related Modules

	Resources

	GNU Free Documentation License

	Using zc.zodbdgc (fix PosKeyError’s)
	Setup

	Garbage collection

	Packing

	Reference analysis and POSKeyErrors

Other ZODB Resources

	IBM developerWorks Example-driven ZODB [http://www.ibm.com/developerworks/aix/library/au-zodb/]

	How To Love ZODB and Forget RDBMS [http://zope.org/Members/adytumsolutions/HowToLoveZODB_PartI]

	Very old ZODB wiki [http://www.zope.org/Members/jim/ZODB/FrontPage]

An overview of the ZODB (by Laurence Rowe)

ZODB in comparison to relational databases, transactions, scalability and best
practice. Originally delivered to the Plone Conference 2007, Naples.

Comparison to other database types

Relational Databases are great at handling large quantities of homogenous
data. If you’re building a ledger system a Relational Database is a great fit.
But Relational Databases only support hierarchical data structures to a
limited degree. Using foreign-key relationships must refer to a single table,
so only a single type can be contained.

Hierarchical databases (such as LDAP or a filesystem) are much more
suitable for modelling the flexible containment hierarchies required for
content management applications. But most of these systems do not support
transactional semantics. ORMs such as SQLAlchemy [http://www.sqlalchemy.org]. make working with Relational Databases in an
object orientated manner much more pleasant. But they don’t overcome the
restrictions inherent in a relational model.

The ZODB is an (almost) transparent python object persistence system,
heavily influenced by Smalltalk. As an Object-Orientated Database it gives you
the flexibility to build a data model fit your application. For the most part
you don’t have to worry about persistency - you only work with python objects
and it just happens in the background.

Of course this power comes at a price. While changing the methods your classes
provide is not a problem, changing attributes can necessitate writing a
migration script, as you would with a relational schema change. With ZODB
obejcts though explicit schema migrations are not enforced, which can bite you
later.

Transactions

The ZODB has a transactional support at its core. Transactions provide
concurrency control and atomicity. Transactions are executed as if they have
exclusive access to the data, so as an application developer you don’t have to
worry about threading. Of course there is nothing to prevent two simultaneous
conflicting requests, So checks are made at transaction commit time to ensure
consistency.

Since Zope 2.8 ZODB has implemented Multi Version Concurrency Control.
This means no more ReadConflictErrors, each transaction is guaranteed to be
able to load any object as it was when the transaction begun.

You may still see (Write) ConflictErrors. These can be minimised using
data structures that support conflict resolution, primarily B-Trees in the
BTrees library. These scalable data structures are used in Large Plone Folders
and many parts of Zope. One downside is that they don’t support user definable
ordering.

The hot points for ConflictErrors are the catalogue indexes. Some of the
indexes do not support conflict resolution and you will see ConflictErrors
under write-intensive loads. On solution is to defer catalogue updates using
QueueCatalog [https://pypi.org/project/Products.QueueCatalog/]
(PloneQueueCatalog [https://pypi.org/project/Products.PloneQueueCatalog/]), which allows
indexing operations to be serialized using a seperate ZEO client. This can
bring big performance benefits as request retries are reduced, but the
downside is that index updates are no longer reflected immediately in the
application. Another alternative is to offload text indexing to a dedicated
search engine using collective.solr [https://pypi.org/project/collective.solr/].

This brings us to Atomicity, the other key feature of ZODB transactions. A
transaction will either succeed or fail, your data is never left in an
inconsistent state if an error occurs. This makes Zope a forgiving system to
work with.

You must though be careful with interactions with external systems. If a
ConflictError occurs Zope will attempt to replay a transaction up to three
times. Interactions with an external system should be made through a Data
Manager that participates in the transaction. If you’re talking to a database
use a Zope DA or a SQLAlchemy wrapper like zope.sqlalchemy [https://pypi.org/project/zope.sqlalchemy/].

Unfortunately the default MailHost implementation used by Plone is not
transaction aware. With it you can see duplicate emails sent. If this is a
problem use TransactionalMailHost.

Scalability Python is limited to a single CPU by the Global Interpreter Lock,
but that’s ok, ZEO lets us run multiple Zope Application servers sharing a
single database. You should run one Zope client for each processor on your
server. ZEO also lets you connect a debug session to your database at the same
time as your Zope web server, invaluable for debugging.

ZEO tends to be IO bound, so the GIL is not an issue.

ZODB also supports partitioning, allowing you to spread data over multiple
storages. However you should be careful about cross database references
(especially when copying and pasting between two databases) as they can be
problematic.

Another common reason to use partitioning is because the ZODB in memory cache
settings are made per database. Separating the catalogue into another storage
lets you set a higher target cache size for catalogue objects than for your
content objects. As much of the Plone interface is catalogue driven this can
have a significant performance benefit, especially on a large site.

[image: ../_images/zeo-diagram.png]

Storage Options

FileStorage is the default. Everything in one big Data.fs file, which is
essentially a transaction log. Use this unless you have a very good reason not
to.

DirectoryStorage (site [http://dirstorage.sourceforge.net]) stores one
file per object revision. Does not require the Data.fs.index to be rebuilt on
an unclean shutdown (which can take a significant time for a large database).
Small number of users.

RelStorage (pypi [https://pypi.org/project/RelStorage/]) stores
pickles in a relational database. PostgreSQL, MySQL and Oracle are supported
and no ZEO server is required. You benefit from the faster network layers of
these database adapters. However, conflict resolution is moved to the
application server, which can be bad for worst case performance when you have
high network latency.

BDBStorage, OracleStorage, PGStorage and APE have now fallen by the wayside.

Other features

Savepoints (previously sub-transactions) allow fine grained error control
and objects to be garbage collected during a transaction, saving memory.

Versions are deprecated (and will be removed in ZODB 3.9). The application
layer is responsible for versioning, e.g. CMFEditions / ZopeVersionControl.

Undo, don’t rely on it! If your object is indexed it may prove impossible
to undo the transaction (independently) if a later transaction has changed the
same index. Undo is only performed on a single database, so if you have
separated out your catalogue it will get out of sync. Fine for undoing in
portal_skins/custom though.

BLOBs are new in ZODB 3.8 / Zope 2.11, bringing efficient large file
support. Great for document management applications.

Packing removes old revisions of objects. Similar to Routine Vacuuming [http://www.postgresql.org/docs/8.3/static/routine-vacuuming.html] in
PostgreSQL.

Some best practice

Don’t write on read. Your Data.fs should not grow on a read. Beware of
setDefault and avoid inplace migration.

Keep your code on the filesystem. Too much stuff in the custom folder will
just lead to pain further down the track. Though this can be very convenient
for getting things done when they are needed yesterday…

Use scalable data structures such as BTrees. Keep your content objects
simple, add functionality with adapters and views.

Introduction to the ZODB (by Michel Pelletier)

In this article, we cover the very basics of the Zope Object
Database (ZODB) for Python programmers. This short article
documents almost everything you need to know about using this
powerful object database in Python. In a later article, I will
cover some of the more advanced features of ZODB for Python
programmers.

ZODB is a database for Python objects that comes with
Zope [http://www.zope.org]. If you’ve ever worked with a
relational database, like PostgreSQL, MySQL, or Oracle, than you
should be familiar with the role of a database. It’s a long term
or short term storage for your application data.

For many tasks, relational databases are clearly a good solution,
but sometimes relational databases don’t fit well with your object
model. If you have lots of different kinds of interconnected
objects with complex relationships, and changing schemas then ZODB
might be worth giving a try.

A major feature of ZODB is transparency. You do not need to write
any code to explicitly read or write your objects to or from a
database. You just put your persistent objects into a container
that works just like a Python dictionary. Everything inside this
dictionary is saved in the database. This dictionary is said to
be the “root” of the database. It’s like a magic bag; any Python
object that you put inside it becomes persistent.

Actually there are a few restrictions on what you can store in the
ZODB. You can store any objects that can be “pickled” into a
standard, cross-platform serial format. Objects like lists,
dictionaries, and numbers can be pickled. Objects like files,
sockets, and Python code objects, cannot be stored in the database
because they cannot be pickled. For more information on
“pickling”, see the Python pickle module documentation at
http://www.python.org/doc/current/lib/module-pickle.html

A Simple Example

The first thing you need to do to start working with ZODB is to
create a “root object”. This process involves first opening a
connection to a “storage”, which is the actual back-end that stores
your data.

ZODB supports many pluggable storage back-ends, but for the
purposes of this article I’m going to show you how to use the
‘FileStorage’ back-end storage, which stores your object data in a
file. Other storages include storing objects in relational
databases, Berkeley databases, and a client to server storage that
stores objects on a remote storage server.

To set up a ZODB, you must first install it. ZODB comes with
Zope, so the easiest way to install ZODB is to install Zope and
use the ZODB that comes with your Zope installation. For those of
you who don’t want all of Zope, but just ZODB, see the
instructions for downloading StandaloneZODB from the ZODB web
page [http://www.zope.org/Wikis/ZODB/FrontPage].

StandaloneZODB can be installed into your system’s Python
libraries using the standard ‘distutils’ Python module.

After installing ZODB, you can start to experiment with it right
from the Python command line interpreter. For example, try the
following python code in your interpreter:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage('mydatabase.fs')
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()

Here, you create storage and use the ‘mydatabse.fs’ file to store
the object information. Then, you create a database that uses
that storage.

Next, the database needs to be “opened” by calling the ‘open()’
method. This will return a connection object to the database.
The connection object then gives you access to the ‘root’ of the
database with the ‘root()’ method.

The ‘root’ object is the dictionary that holds all of your
persistent objects. For example, you can store a simple list of
strings in the root object:

>>> root['employees'] = ['Mary', 'Jo', 'Bob']

Now, you have changed the persistent database by adding a new
object, but this change is so far only temporary. In order to
make the change permanent, you must commit the current
transaction:

>>> import transaction
>>> transaction.commit()

Transactions group of lots of changes in one atomic operation. In
a later article, I’ll show you how this is a very powerful
feature. For now, you can think of committing transactions as
“checkpoints” where you save the changes you’ve made to your
objects so far. Later on, I’ll show you how to abort those
changes, and how to undo them after they are committed.

Now let’s find out if our data was actually saved. First close the
database connection:

>>> connection.close()

Then quit Python. Now start the Python interpreter up again, and
connect to the database you just created:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage('mydatabase.fs')
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()

Now, let’s see what’s in the root:

>>> root.items()
[('employees', ['Mary', 'Jo', 'Bob'])]

There’s your list. If you had used a relational database, you
would have had to issue a SQL query to save even a simple Python
list like the above example. You would have also needed some code
to convert a SQL query back into the list when you wanted to use
it again. You don’t have to do any of this work when using ZODB.
Using ZODB is almost completely transparent, in fact, ZODB based
programs often look suspiciously simple!

Keep in mind that ZODB’s persistent dictionary is just the tip of
the persistent iceberg. Persistent objects can have attributes
that are themselves persistent. In other words, even though you
may have only one or two “top level” persistent objects as values
in the persistent dictionary, you can still have thousands of
sub-objects below them. This is, in fact, how Zope does it. In
Zope, there is only one top level object that is the root
“application” object for all other objects in Zope.

Detecting Changes

One thing that makes ZODB so easy to use is that it doesn’t
require you to keep track of your changes. All you have to do is
to make changes to persistent objects and then commit a
transaction. Anything that has changed will be stored in the
database.

There is one exception to this rule when it comes to simple
mutable Python types like lists and dictionaries. If you change a
list or dictionary that is already stored in the database, then
the change will not take effect. Consider this example:

>>> root['employees'].append('Bill')
>>> transaction.commit()

You would expect this to work, but it doesn’t. The reason for
this is that ZODB cannot detect that the ‘employees’ list
changed. The ‘employees’ list is a mutable object that does not
notify ZODB when it changes.

There are a couple of very simple ways around this problem. The
simplest is to re-assign the changed object:

>>> employees = root['employees']
>>> employees.append('Bill')
>>> root['employees'] = employees
>>> transaction.commit()

Here, you move the employees list to a local variable, change the
list, and then reassign the list back into the database and
commit the transaction. This reassignment notifies the database
that the list changed and needs to be saved to the database.

Later in this article, we’ll show you another technique for
notifying the ZODB that your objects have changed. Also, in a
later article, we’ll show you how to use simple, ZODB-aware list
and dictionary classes that come pre-packaged with ZODB for your
convenience.

Persistent Classes

The easiest way to create mutable objects that notify the ZODB of
changes is to create a persistent class. Persistent classes let
you store your own kinds of objects in the database. For example,
consider a class that represents a employee:

import ZODB
from Persistence import Persistent

class Employee(Persistent):

 def setName(self, name):
 self.name = name

To create a persistent class, simply subclass from
‘Persistent.Persistent’. Because of some special magic that ZODB
does, you must first import ZODB before you can import Persistent.
The ‘Persistent’ module is actually created when you import
‘ZODB’.

Now, you can put Employee objects in your database:

>>> employees=[]
>>> for name in ['Mary', 'Joe', 'Bob']:
... employee = Employee()
... employee.setName(name)
... employees.append(employee)
>>> root['employees']=employees
>>> transaction.commit()

Don’t forget to call ‘commit()’, so that the changes you have made
so far are committed to the database, and a new transaction is
begun.

Now you can change your employees and they will be saved in the
database. For example you can change Bob’s name to “Robert”:

>>> bob=root['employees'][2]
>>> bob.setName('Robert')
>>> transaction.commit()

You can even change attributes of persistent instaces without
calling methods:

>>> bob=root['employees'][2]
>>> bob._coffee_prefs=('Cream', 'Sugar')
>>> transaction.commit()

It doesn’t matter whether you change an attribute directly, or
whether it’s changed by a method. As you can tell, all of the
normal Python language rules still work as you’d expect.

Mutable Attributes

Earlier you saw how ZODB can’t detect changes to normal mutable
objects like Python lists. This issue still affects you when using
persistent instances. This is because persistent instances can
have attributes which are normal mutable objects. For example,
consider this class:

class Employee(Persistent):

 def __init__(self):
 self.tasks = []

 def setName(self, name):
 self.name = name

 def addTask(self, task):
 self.task.append(task)

When you call ‘addTask’, the ZODB won’t know that the mutable
attribute ‘self.tasks’ has changed. As you saw earlier, you can
reassign ‘self.tasks’ after you change it to get around this
problem. However, when you’re using persistent instances, you have
another choice. You can signal the ZODB that your instance has
changed with the ‘_p_changed’ attribute:

class Employee(Persistent):
 ...

 def addTask(self, task):
 self.task.append(task)
 self._p_changed = 1

To signal that this object has change, set the ‘_p_changed’
attribute to 1. You only need to signal ZODB once, even if you
change many mutable attributes.

The ‘_p_changed’ flag leads us to one of the few rules of you must
follow when creating persistent classes: your instances cannot
have attributes that begin with ‘_p_’, those names are reserved
for use by the ZODB.

A Complete Example

Here’s a complete example program. It builds on the employee
examples used so far:

from ZODB import DB
from ZODB.FileStorage import FileStorage
from ZODB.PersistentMapping import PersistentMapping
from Persistence import Persistent
import transaction

class Employee(Persistent):
 """An employee"""

 def __init__(self, name, manager=None):
 self.name=name
 self.manager=manager

setup the database
storage=FileStorage("employees.fs")
db=DB(storage)
connection=db.open()
root=connection.root()

get the employees mapping, creating an empty mapping if
necessary
if not root.has_key("employees"):
 root["employees"] = {}
employees=root["employees"]

def listEmployees():
 if len(employees.values())==0:
 print "There are no employees."
 print
 return
 for employee in employees.values():
 print "Name: %s" % employee.name
 if employee.manager is not None:
 print "Manager's name: %s" % employee.manager.name
 print

def addEmployee(name, manager_name=None):
 if employees.has_key(name):
 print "There is already an employee with this name."
 return
 if manager_name:
 try:
 manager=employees[manager_name]
 except KeyError:
 print
 print "No such manager"
 print
 return
 employees[name]=Employee(name, manager)
 else:
 employees[name]=Employee(name)

 root['employees'] = employees # reassign to change
 transaction.commit()
 print "Employee %s added." % name
 print

if __name__=="__main__":
 while 1:
 choice=raw_input("Press 'L' to list employees, 'A' to add"
 "an employee, or 'Q' to quit:")
 choice=choice.lower()
 if choice=="l":
 listEmployees()
 elif choice=="a":
 name=raw_input("Employee name:")
 manager_name=raw_input("Manager name:")
 addEmployee(name, manager_name)
 elif choice=="q":
 break

 # close database
 connection.close()

This program demonstrates a couple interesting things. First, this
program shows how persistent objects can refer to each other. The
‘self.manager’ attribute of ‘Employee’ instances can refer to other
‘Employee’ instances. Unlike a relational database, there is no
need to use indirection such as object ids when referring from one
persistent object to another. You can just use normal Python
references. In fact, you can even use circular references.

A final trick used by this program is to look for a persistent
object and create it if it is not present. This allows you to just
run this program without having to run a setup script to build the
database first. If there is not database present, the program will
create one and initialize it.

Conclusion

ZODB is a very simple, transparent object database for Python that
is a freely available component of the Zope application server.
As these examples illustrate, only a few lines of code are needed
to start storing Python objects in ZODB, with no need to write SQL
queries. In the next article on ZODB, we’ll show you some more
advanced techniques for using ZODB, like using ZODB’s distributed
object protocol to distribute your persistent objects across many
machines.

ZODB Resources

	Andrew Kuchling’s “ZODB pages” [http://web.archive.org/web/20030606003753/http://amk.ca/zodb/] (archived)

	Zope.org “ZODB Wiki” [http://www.zope.org/Wikis/ZODB/FrontPage]

	Jim Fulton’s “Introduction to the Zope Object Database” [http://www.python.org/workshops/2000-01/proceedings/papers/fulton/zodb3.html]

Advanced ZODB for Python Programmers

In the first article in this series, “ZODB for Python
Programmers”:ZODB1 I covered some of the simpler aspects of Python
object persistence. In this article, I’ll go over some of the more
advanced features of ZODB.

In addition to simple persistence, ZODB offers some very useful
extras for the advanced Python application. Specificly, we’ll cover
the following advanced features in this article:

	Persistent-Aware Types – ZODB comes with some special,
“persistent-aware” data types for storing data in a ZODB. The
most useful of these is the “BTree”, which is a fast, efficient
storage object for lots of data.

	Volatile Data – Not all your data is meant to be stored in the
database, ZODB let’s you have volatile data on your objects that
does not get saved.

	Pluggable Storages – ZODB offers you the ability to use many
different storage back-ends to store your object data, including
files, relational databases and a special client-server storage
that stores objects on a remote server.

	Conflict Resolution – When many threads try to write to the same
object at the same time, you can get conflicts. ZODB offers a
conflict resolution protocol that allows you to mitigate most
conflicting writes to your data.

	Transactions – When you want your changes to be “all or nothing”
transactions come to the rescue.

Persistent-Aware Types

You can also get around the mutable attribute problem discussed in
the first article by using special types that are “persistent
aware”. ZODB comes with the following persistent aware mutable
object types:

	PersistentList – This type works just like a list, except that
changing it does not require setting _p_changed or explicitly
re-assigning the attribute.

	PersistentMapping – A persistent aware dictionary, much like
PersistentList.

	BTree – A dictionary-like object that can hold large
collections of objects in an ordered, fast, efficient way.

BTrees offer a very powerful facility to the Python programmer:

	BTrees can hold a large collection of information in an
efficient way; more objects than your computer has enough
memory to hold at one time.

	BTrees are integrated into the persistence machinery to work
effectively with ZODB’s object cache. Recently, or heavily
used objects are kept in a memory cache for speed.

	BTrees can be searched very quickly, because they are stored
in an fast, balanced tree data structure.

	BTrees come in three flavors, OOBTrees, IOBTrees, OIBTrees, and
IIBTrees. The last three are optimized for integer keys, values,
and key-value pairs, respectively. This means that, for example,
an IOBTree is meant to map an integer to an object, and is
optimized for having integers keys.

Using BTrees

Suppose you track the movement of all your employees with
heat-seeking cameras hidden in the ceiling tiles. Since your
employees tend to frequently congregate against you, all of the
tracking information could end up to be a lot of data, possibly
thousands of coordinates per day per employee. Further, you want
to key the coordinate on the time that it was taken, so that you
can only look at where your employees were during certain times:

from BTrees import IOBTree
from time import time

class Employee(Persistent):

 def __init__(self):
 self.movements = IOBTree()

 def fix(self, coords):
 "get a fix on the employee"
 self.movements[int(time())] = coords

 def trackToday(self):
 "return all the movements of the
 employee in the last 24 hours"
 current_time = int(time())
 return self.movements.items(current_time - 86400,
 current_time)

In this example, the ‘fix’ method is called every time one of your
cameras sees that employee. This information is then stored in a
BTree, with the current ‘time()’ as the key and the ‘coordinates’
as the value.

Because BTrees store their information is a ordered structure,
they can be quickly searched for a range of key values. The
‘trackToday’ method uses this feature to return a sequence of
coordinates from 24 hours hence to the present.

This example shows how BTrees can be quickly searched for a range
of values from a minimum to a maximum, and how you can use this
technique to oppress your workforce. BTrees have a very rich API,
including doing unions and intersections of result sets.

Not All Objects are Persistent

You don’t have to make all of your objects persistent.
Non-persistent objects are often useful to represent either
“canned” behavior (classes that define methods but no state), or
objects that are useful only as a “cache” that can be thrown away
when your persistent object is deactivated (removed from memory
when not used).

ZODB provides you with the ability to have volatile attributes.
Volatile attributes are attributes of persistent objects that are
never saved in the database, even if they are capable of being
persistent. Volatile attributes begin with ‘_v_’ are good for
keeping cached information around for optimization. ZODB also
provides you with access to special pickling hooks that allow you
to set volatile information when an object is activated.

Imagine you had a class that stored a complex image that you
needed to calculate. This calculation is expensive. Instead of
calculating the image every time you called a method, it would be
better to calculate it once and then cache the result in a
volatile attribute:

def image(self):
 "a large and complex image of the terrain"
 if hasattr(self, '_v_image'):
 return self._v_image
 image=expensive_calculation()
 self._v_image=image
 return image

Here, calling ‘image’ the first time the object is activated will
cause the method to do the expensive calculation. After the first
call, the image will be cached in a volatile attribute. If the
object is removed from memory, the ‘_v_image’ attribute is not
saved, so the cached image is thrown away, only to be recalculated
the next time you call ‘image’.

ZODB and Concurrency

Different, threads, processes, and computers on a network can open
connections to a single ZODB object database. Each of these
different processes keeps its own copy of the objects that it uses
in memory.

The problem with allowing concurrent access is that conflicts can
occur. If different threads try to commit changes to the same
objects at the same time, one of the threads will raise a
ConflictError. If you want, you can write your application to
either resolve or retry conflicts a reasonable number of times.

Zope will retry a conflicting ZODB operation three times. This is
usually pretty reasonable behavior. Because conflicts only happen
when two threads write to the same object, retrying a conflict
means that one thread will win the conflict and write itself, and
the other thread will retry a few seconds later.

Pluggable Storages

Different processes and computers can connection to the same
database using a special kind of storage called a ‘ClientStorage’.
A ‘ClientStorage’ connects to a ‘StorageServer’ over a network.

In the very beginning, you created a connection to the database by
first creating a storage. This was of the type ‘FileStorage’.
Zope comes with several different back end storage objects, but
one of the most interesting is the ‘ClientStorage’ from the Zope
Enterprise Objects product (ZEO).

The ‘ClientStorage’ storage makes a TCP/IP connection to a
‘StorageServer’ (also provided with ZEO). This allows many
different processes on one or machines to work with the same
object database and, hence, the same objects. Each process gets a
cached “copy” of a particular object for speed. All of the
‘ClientStorages’ connected to a ‘StorageServer’ speak a special
object transport and cache invalidation protocol to keep all of
your computers synchronized.

Opening a ‘ClientStorage’ connection is simple. The following
code creates a database connection and gets the root object for a
‘StorageServer’ listening on “localhost:12345”:

from ZODB import DB
from ZEO import ClientStorage
storage = ClientStorage.ClientStorage('localhost', 12345)
db = DB(storage)
connection = db.open()
root = connection.root()

In the rare event that two processes (or threads) modify the same
object at the same time, ZODB provides you with the ability to
retry or resolve these conflicts yourself.

Resolving Conflicts

If a conflict happens, you have two choices. The first choice is
that you live with the error and you try again. Statistically,
conflicts are going to happen, but only in situations where objects
are “hot-spots”. Most problems like this can be “designed away”;
if you can redesign your application so that the changes get
spread around to many different objects then you can usually get
rid of the hot spot.

Your second choice is to try and resolve the conflict. In many
situations, this can be done. For example, consider the following
persistent object:

class Counter(Persistent):

 self.count = 0

 def hit(self):
 self.count = self.count + 1

This is a simple counter. If you hit this counter with a lot of
requests though, it will cause conflict errors as different threads
try to change the count attribute simultaneously.

But resolving the conflict between conflicting threads in this
case is easy. Both threads want to increment the self.count
attribute by a value, so the resolution is to increment the
attribute by the sum of the two values and make both commits
happy.

To resolve a conflict, a class should define an
‘_p_resolveConflict’ method. This method takes three arguments:

	‘oldState’ – The state of the object that the changes made by
the current transaction were based on. The method is permitted
to modify this value.

	‘savedState’ – The state of the object that is currently
stored in the database. This state was written after ‘oldState’
and reflects changes made by a transaction that committed
before the current transaction. The method is permitted to
modify this value.

	‘newState’ – The state after changes made by the current
transaction. The method is not permitted to modify this
value. This method should compute a new state by merging
changes reflected in ‘savedState’ and ‘newState’, relative to
‘oldState’.

The method should return the state of the object after resolving
the differences.

Here is an example of a ‘_p_resolveConflict’ in the ‘Counter’
class:

class Counter(Persistent):

 self.count = 0

 def hit(self):
 self.count = self.count + 1

 def _p_resolveConflict(self, oldState, savedState, newState):

 # Figure out how each state is different:
 savedDiff= savedState['count'] - oldState['count']
 newDiff= newState['count']- oldState['count']

 # Apply both sets of changes to old state:
 return oldState['count'] + savedDiff + newDiff

In the above example, ‘_p_resolveConflict’ resolves the difference
between the two conflicting transactions.

Transactions and Subtransactions

Transactions are a very powerful concept in databases.
Transactions let you make many changes to your information as if
they were all one big change. Imagine software that did online
banking and allowed you to transfer money from one account to
another. You would do this by deducting the amount of the
transfer from one account, and adding that amount onto the
other.

If an error happened while you were adding the money to the
receiving account (say, the bank’s computers were unavailable),
then you would want to abort the transaction so that the state of
the accounts went back to the way they were before you changed
anything.

To abort a transaction, you need to call the ‘abort’ method of the
transactions object:

>>> import transaction
>>> transaction.abort()

This will throw away all the currently changed objects and start a
new, empty transaction.

Subtransactions, sometimes called “inner transactions”, are
transactions that happen inside another transaction.
Subtransactions can be commited and aborted like regular “outer”
transactions. Subtransactions mostly provide you with an
optimization technique.

Subtransactions can be commited and aborted. Commiting or
aborting a subtransaction does not commit or abort its outer
transaction, just the subtransaction. This lets you use many,
fine-grained transactions within one big transaction.

Why is this important? Well, in order for a transaction to be
“rolled back” the changes in the transaction must be stored in
memory until commit time. By commiting a subtransaction, you are
telling Zope that “I’m pretty sure what I’ve done so far is
permenant, you can store this subtransaction somewhere other than
in memory”. For very, very large transactions, this can be a big
memory win for you.

If you abort an outer transaction, then all of its inner
subtransactions will also be aborted and not saved. If you abort
an inner subtransaction, then only the changes made during that
subtransaction are aborted, and the outer transaction is not
aborted and more changes can be made and commited, including more
subtransactions.

You can commit or abort a subtransaction by calling either
commit() or abort() with an argument of 1:

transaction.commit(1) # or
transaction.abort(1)

Subtransactions offer you a nice way to “batch” all of your “all
or none” actions into smaller “all or none” actions while still
keeping the outer level “all or none” transaction intact. As a
bonus, they also give you much better memory resource performance.

Conclusion

ZODB offers many advanced features to help you develop simple, but
powerful python programs. In this article, you used some of the
more advanced features of ZODB to handle different application
needs, like storing information in large sets, using the database
concurrently, and maintaining transactional integrity. For more
information on ZODB, join the discussion list at zodb-dev@zope.org
where you can find out more about this powerful component of Zope.

Very old ZODB programming guide

This guide is based heavily on the work of A. M. Kuchling who wrote the
original guide back in 2002 and which was published under the GNU Free
Documentation License, Version 1.1. See the appendix entitled “GNU Free
Documentation License” for more information.

	Introduction
	What is the ZODB?

	OODBs vs. Relational DBs

	What is ZEO?

	About this guide

	Acknowledgements

	ZODB Programming
	Installing ZODB

	How ZODB Works

	Opening a ZODB

	Using a ZODB Configuration File

	Writing a Persistent Class

	Rules for Writing Persistent Classes

	Writing Persistent Classes

	ZEO
	How ZEO Works

	Installing ZEO

	Testing the ZEO Installation

	ZEO Programming Notes

	Sample Application: chatter.py

	Transactions and Versioning
	Committing and Aborting

	Subtransactions

	Undoing Changes

	Versions

	Multithreaded ZODB Programs

	Related Modules
	persistent.mapping.PersistentMapping

	persistent.list.PersistentList

	BTrees Package

	Resources

	GNU Free Documentation License
	Applicability and Definitions

	Verbatim Copying

	Copying in Quantity

	Modifications

	Combining Documents

	Collections of Documents

	Aggregation With Independent Works

	Translation

	Termination

	Future Revisions of This Licence

Introduction

This guide explains how to write Python programs that use the Z Object Database
(ZODB) and Zope Enterprise Objects (ZEO). The latest version of the guide is
always available at http://www.zope.org/Wikis/ZODB/guide/index.html.

What is the ZODB?

The ZODB is a persistence system for Python objects. Persistent programming
languages provide facilities that automatically write objects to disk and read
them in again when they’re required by a running program. By installing the
ZODB, you add such facilities to Python.

It’s certainly possible to build your own system for making Python objects
persistent. The usual starting points are the pickle [https://docs.python.org/3/library/pickle.html#module-pickle] module, for
converting objects into a string representation, and various database modules,
such as the gdbm or bsddb modules, that provide ways to write
strings to disk and read them back. It’s straightforward to combine the
pickle [https://docs.python.org/3/library/pickle.html#module-pickle] module and a database module to store and retrieve objects, and in
fact the shelve [https://docs.python.org/3/library/shelve.html#module-shelve] module, included in Python’s standard library, does this.

The downside is that the programmer has to explicitly manage objects, reading an
object when it’s needed and writing it out to disk when the object is no longer
required. The ZODB manages objects for you, keeping them in a cache, writing
them out to disk when they are modified, and dropping them from the cache if
they haven’t been used in a while.

OODBs vs. Relational DBs

Another way to look at it is that the ZODB is a Python-specific object-oriented
database (OODB). Commercial object databases for C++ or Java often require that
you jump through some hoops, such as using a special preprocessor or avoiding
certain data types. As we’ll see, the ZODB has some hoops of its own to jump
through, but in comparison the naturalness of the ZODB is astonishing.

Relational databases (RDBs) are far more common than OODBs. Relational databases
store information in tables; a table consists of any number of rows, each row
containing several columns of information. (Rows are more formally called
relations, which is where the term “relational database” originates.)

Let’s look at a concrete example. The example comes from my day job working for
the MEMS Exchange, in a greatly simplified version. The job is to track process
runs, which are lists of manufacturing steps to be performed in a semiconductor
fab. A run is owned by a particular user, and has a name and assigned ID
number. Runs consist of a number of operations; an operation is a single step
to be performed, such as depositing something on a wafer or etching something
off it.

Operations may have parameters, which are additional information required to
perform an operation. For example, if you’re depositing something on a wafer,
you need to know two things: 1) what you’re depositing, and 2) how much should
be deposited. You might deposit 100 microns of silicon oxide, or 1 micron of
copper.

Mapping these structures to a relational database is straightforward:

CREATE TABLE runs (
 int run_id,
 varchar owner,
 varchar title,
 int acct_num,
 primary key(run_id)
);

CREATE TABLE operations (
 int run_id,
 int step_num,
 varchar process_id,
 PRIMARY KEY(run_id, step_num),
 FOREIGN KEY(run_id) REFERENCES runs(run_id),
);

CREATE TABLE parameters (
 int run_id,
 int step_num,
 varchar param_name,
 varchar param_value,
 PRIMARY KEY(run_id, step_num, param_name)
 FOREIGN KEY(run_id, step_num)
 REFERENCES operations(run_id, step_num),
);

In Python, you would write three classes named Run, Operation,
and Parameter. I won’t present code for defining these classes, since
that code is uninteresting at this point. Each class would contain a single
method to begin with, an __init__() method that assigns default values,
such as 0 or None, to each attribute of the class.

It’s not difficult to write Python code that will create a Run instance
and populate it with the data from the relational tables; with a little more
effort, you can build a straightforward tool, usually called an object-
relational mapper, to do this automatically. (See
http://www.amk.ca/python/unmaintained/ordb.html for a quick hack at a
Python object-relational mapper, and
http://www.python.org/workshops/1997-10/proceedings/shprentz.html for Joel
Shprentz’s more successful implementation of the same idea; Unlike mine,
Shprentz’s system has been used for actual work.)

However, it is difficult to make an object-relational mapper reasonably quick; a
simple-minded implementation like mine is quite slow because it has to do
several queries to access all of an object’s data. Higher performance object-
relational mappers cache objects to improve performance, only performing SQL
queries when they actually need to.

That helps if you want to access run number 123 all of a sudden. But what if
you want to find all runs where a step has a parameter named ‘thickness’ with a
value of 2.0? In the relational version, you have two unappealing choices:

	Write a specialized SQL query for this case: SELECT run_id FROM operations
WHERE param_name = 'thickness' AND param_value = 2.0

If such queries are common, you can end up with lots of specialized queries.
When the database tables get rearranged, all these queries will need to be
modified.

	An object-relational mapper doesn’t help much. Scanning through the runs
means that the the mapper will perform the required SQL queries to read run #1,
and then a simple Python loop can check whether any of its steps have the
parameter you’re looking for. Repeat for run #2, 3, and so forth. This does a
vast number of SQL queries, and therefore is incredibly slow.

An object database such as ZODB simply stores internal pointers from object to
object, so reading in a single object is much faster than doing a bunch of SQL
queries and assembling the results. Scanning all runs, therefore, is still
inefficient, but not grossly inefficient.

What is ZEO?

The ZODB comes with a few different classes that implement the Storage
interface. Such classes handle the job of writing out Python objects to a
physical storage medium, which can be a disk file (the FileStorage
class), a BerkeleyDB file (BDBFullStorage), a relational database
(DCOracleStorage), or some other medium. ZEO adds
ClientStorage, a new Storage that doesn’t write to physical
media but just forwards all requests across a network to a server. The server,
which is running an instance of the StorageServer class, simply acts as
a front-end for some physical Storage class. It’s a fairly simple
idea, but as we’ll see later on in this document, it opens up many
possibilities.

About this guide

The primary author of this guide works on a project which uses the ZODB and ZEO
as its primary storage technology. We use the ZODB to store process runs and
operations, a catalog of available processes, user information, accounting
information, and other data. Part of the goal of writing this document is to
make our experience more widely available. A few times we’ve spent hours or
even days trying to figure out a problem, and this guide is an attempt to gather
up the knowledge we’ve gained so that others don’t have to make the same
mistakes we did while learning.

The author’s ZODB project is described in a paper available here,
http://www.amk.ca/python/writing/mx-architecture/

This document will always be a work in progress. If you wish to suggest
clarifications or additional topics, please send your comments to the
ZODB-dev mailing list [https://groups.google.com/forum/#!forum/zodb].

Acknowledgements

Andrew Kuchling wrote the original version of this guide, which provided some of
the first ZODB documentation for Python programmers. His initial version has
been updated over time by Jeremy Hylton and Tim Peters.

I’d like to thank the people who’ve pointed out inaccuracies and bugs, offered
suggestions on the text, or proposed new topics that should be covered: Jeff
Bauer, Willem Broekema, Thomas Guettler, Chris McDonough, George Runyan.

ZODB Programming

Installing ZODB

ZODB is packaged using the standard distutils tools.

Requirements

You will need Python 2.3 or higher. Since the code is packaged using distutils,
it is simply a matter of untarring or unzipping the release package, and then
running python setup.py install.

You’ll need a C compiler to build the packages, because there are various C
extension modules. Binary installers are provided for Windows users.

Installing the Packages

Download the ZODB tarball containing all the packages for both ZODB and ZEO from
http://www.zope.org/Products/ZODB3.3. See the README.txt file in
the top level of the release directory for details on building, testing, and
installing.

You can find information about ZODB and the most current releases in the ZODB
Wiki at http://www.zope.org/Wikis/ZODB.

How ZODB Works

The ZODB is conceptually simple. Python classes subclass a
persistent.Persistent [https://persistent.readthedocs.io/en/latest/api/interfaces.html#persistent.Persistent] class to become ZODB-aware. Instances of
persistent objects are brought in from a permanent storage medium, such as a
disk file, when the program needs them, and remain cached in RAM. The ZODB
traps modifications to objects, so that when a statement such as obj.size =
1 is executed, the modified object is marked as “dirty.” On request, any
dirty objects are written out to permanent storage; this is called committing a
transaction. Transactions can also be aborted or rolled back, which results in
any changes being discarded, dirty objects reverting to their initial state
before the transaction began.

The term “transaction” has a specific technical meaning in computer science.
It’s extremely important that the contents of a database don’t get corrupted by
software or hardware crashes, and most database software offers protection
against such corruption by supporting four useful properties, Atomicity,
Consistency, Isolation, and Durability. In computer science jargon these four
terms are collectively dubbed the ACID properties, forming an acronym from their
names.

The ZODB provides all of the ACID properties. Definitions of the ACID
properties are:

	Atomicity

	means that any changes to data made during a transaction are all-or-nothing.
Either all the changes are applied, or none of them are. If a program makes a
bunch of modifications and then crashes, the database won’t be partially
modified, potentially leaving the data in an inconsistent state; instead all the
changes will be forgotten. That’s bad, but it’s better than having a partially-
applied modification put the database into an inconsistent state.

	Consistency

	means that each transaction executes a valid transformation of the database
state. Some databases, but not ZODB, provide a variety of consistency checks in
the database or language; for example, a relational database constraint columns
to be of particular types and can enforce relations across tables. Viewed more
generally, atomicity and isolation make it possible for applications to provide
consistency.

	Isolation

	means that two programs or threads running in two different transactions cannot
see each other’s changes until they commit their transactions.

	Durability

	means that once a transaction has been committed, a subsequent crash will not
cause any data to be lost or corrupted.

Opening a ZODB

There are 3 main interfaces supplied by the ZODB: Storage, DB,
and Connection classes. The DB and Connection
interfaces both have single implementations, but there are several different
classes that implement the Storage interface.

	Storage classes are the lowest layer, and handle storing and
retrieving objects from some form of long-term storage. A few different types of
Storage have been written, such as FileStorage, which uses regular disk
files, and BDBFullStorage, which uses Sleepycat Software’s BerkeleyDB
database. You could write a new Storage that stored objects in a relational
database, for example, if that would better suit your application. Two example
storages, DemoStorage and MappingStorage, are available to use
as models if you want to write a new Storage.

	The DB class sits on top of a storage, and mediates the interaction
between several connections. One DB instance is created per process.

	Finally, the Connection class caches objects, and moves them into and
out of object storage. A multi-threaded program should open a separate
Connection instance for each thread. Different threads can then modify
objects and commit their modifications independently.

Preparing to use a ZODB requires 3 steps: you have to open the Storage,
then create a DB instance that uses the Storage, and then get
a Connection from the DB instance. All this is only a few
lines of code:

from ZODB import FileStorage, DB

storage = FileStorage.FileStorage('/tmp/test-filestorage.fs')
db = DB(storage)
conn = db.open()

Note that you can use a completely different data storage mechanism by changing
the first line that opens a Storage; the above example uses a
FileStorage. In section ZEO, “How ZEO Works”, you’ll see how
ZEO uses this flexibility to good effect.

Using a ZODB Configuration File

ZODB also supports configuration files written in the ZConfig format. A
configuration file can be used to separate the configuration logic from the
application logic. The storages classes and the DB class support a
variety of keyword arguments; all these options can be specified in a config
file.

The configuration file is simple. The example in the previous section could use
the following example:

<zodb>
 <filestorage>
 path /tmp/test-filestorage.fs
 </filestorage>
</zodb>

The ZODB.config module includes several functions for opening database
and storages from configuration files.

import ZODB.config

db = ZODB.config.databaseFromURL('/tmp/test.conf')
conn = db.open()

The ZConfig documentation, included in the ZODB3 release, explains the format in
detail. Each configuration file is described by a schema, by convention stored
in a component.xml file. ZODB, ZEO, zLOG, and zdaemon all have schemas.

Writing a Persistent Class

Making a Python class persistent is quite simple; it simply needs to subclass
from the Persistent class, as shown in this example:

from persistent import Persistent

class User(Persistent):
 pass

The Persistent base class is a new-style class implemented in C.

For simplicity, in the examples the User class will simply be used as a
holder for a bunch of attributes. Normally the class would define various
methods that add functionality, but that has no impact on the ZODB’s treatment
of the class.

The ZODB uses persistence by reachability; starting from a set of root objects,
all the attributes of those objects are made persistent, whether they’re simple
Python data types or class instances. There’s no method to explicitly store
objects in a ZODB database; simply assign them as an attribute of an object, or
store them in a mapping, that’s already in the database. This chain of
containment must eventually reach back to the root object of the database.

As an example, we’ll create a simple database of users that allows retrieving a
User object given the user’s ID. First, we retrieve the primary root
object of the ZODB using the root() method of the Connection
instance. The root object behaves like a Python dictionary, so you can just add
a new key/value pair for your application’s root object. We’ll insert an
OOBTree object that will contain all the User objects. (The
BTree module is also included as part of Zope.)

dbroot = conn.root()

Ensure that a 'userdb' key is present
in the root
if not dbroot.has_key('userdb'):
 from BTrees.OOBTree import OOBTree
 dbroot['userdb'] = OOBTree()

userdb = dbroot['userdb']

Inserting a new user is simple: create the User object, fill it with
data, insert it into the BTree instance, and commit this transaction.

Create new User instance
import transaction

newuser = User()

Add whatever attributes you want to track
newuser.id = 'amk'
newuser.first_name = 'Andrew' ; newuser.last_name = 'Kuchling'
...

Add object to the BTree, keyed on the ID
userdb[newuser.id] = newuser

Commit the change
transaction.commit()

The transaction module defines a few top-level functions for working with
transactions. commit() writes any modified objects to disk, making the
changes permanent. abort() rolls back any changes that have been made,
restoring the original state of the objects. If you’re familiar with database
transactional semantics, this is all what you’d expect. get() returns a
Transaction object that has additional methods like note(), to
add a note to the transaction metadata.

More precisely, the transaction module exposes an instance of the
ThreadTransactionManager transaction manager class as
transaction.manager, and the transaction functions get() and
begin() redirect to the same-named methods of transaction.manager.
The commit() and abort() functions apply the methods of the same
names to the Transaction object returned by
transaction.manager.get(). This is for convenience. It’s also possible to
create your own transaction manager instances, and to tell DB.open() to use
your transaction manager instead.

Because the integration with Python is so complete, it’s a lot like having
transactional semantics for your program’s variables, and you can experiment
with transactions at the Python interpreter’s prompt:

>>> newuser
<User instance at 81b1f40>
>>> newuser.first_name # Print initial value
'Andrew'
>>> newuser.first_name = 'Bob' # Change first name
>>> newuser.first_name # Verify the change
'Bob'
>>> transaction.abort() # Abort transaction
>>> newuser.first_name # The value has changed back
'Andrew'

Rules for Writing Persistent Classes

Practically all persistent languages impose some restrictions on programming
style, warning against constructs they can’t handle or adding subtle semantic
changes, and the ZODB is no exception. Happily, the ZODB’s restrictions are
fairly simple to understand, and in practice it isn’t too painful to work around
them.

The summary of rules is as follows:

	If you modify a mutable object that’s the value of an object’s attribute, the
ZODB can’t catch that, and won’t mark the object as dirty. The solution is to
either set the dirty bit yourself when you modify mutable objects, or use a
wrapper for Python’s lists and dictionaries (PersistentList,
PersistentMapping) that will set the dirty bit properly.

	Recent versions of the ZODB allow writing a class with __setattr__() ,
__getattr__(), or __delattr__() methods. (Older versions didn’t
support this at all.) If you write such a __setattr__() or
__delattr__() method, its code has to set the dirty bit manually.

	A persistent class should not have a __del__() method. The database
moves objects freely between memory and storage. If an object has not been used
in a while, it may be released and its contents loaded from storage the next
time it is used. Since the Python interpreter is unaware of persistence, it
would call __del__() each time the object was freed.

Let’s look at each of these rules in detail.

Modifying Mutable Objects

The ZODB uses various Python hooks to catch attribute accesses, and can trap
most of the ways of modifying an object, but not all of them. If you modify a
User object by assigning to one of its attributes, as in
userobj.first_name = 'Andrew', the ZODB will mark the object as having been
changed, and it’ll be written out on the following commit().

The most common idiom that isn’t caught by the ZODB is mutating a list or
dictionary. If User objects have a attribute named friends
containing a list, calling userobj.friends.append(otherUser) doesn’t mark
userobj as modified; from the ZODB’s point of view, userobj.friends was
only read, and its value, which happened to be an ordinary Python list, was
returned. The ZODB isn’t aware that the object returned was subsequently
modified.

This is one of the few quirks you’ll have to remember when using the ZODB; if
you modify a mutable attribute of an object in place, you have to manually mark
the object as having been modified by setting its dirty bit to true. This is
done by setting the _p_changed attribute of the object to true:

userobj.friends.append(otherUser)
userobj._p_changed = True

You can hide the implementation detail of having to mark objects as dirty by
designing your class’s API to not use direct attribute access; instead, you can
use the Java-style approach of accessor methods for everything, and then set the
dirty bit within the accessor method. For example, you might forbid accessing
the friends attribute directly, and add a get_friend_list() accessor
and an add_friend() modifier method to the class. add_friend()
would then look like this:

def add_friend(self, friend):
 self.friends.append(otherUser)
 self._p_changed = True

Alternatively, you could use a ZODB-aware list or mapping type that handles the
dirty bit for you. The ZODB comes with a PersistentMapping class, and
I’ve contributed a PersistentList class that’s included in my ZODB
distribution, and may make it into a future upstream release of Zope.

__getattr__(), __delattr__(), and __setattr__()

ZODB allows persistent classes to have hook methods like __getattr__() and
__setattr__(). There are four special methods that control attribute
access; the rules for each are a little different.

The __getattr__() method works pretty much the same for persistent classes
as it does for other classes. No special handling is needed. If an object is a
ghost, then it will be activated before __getattr__() is called.

The other methods are more delicate. They will override the hooks provided by
Persistent, so user code must call special methods to invoke those
hooks anyway.

The __getattribute__() method will be called for all attribute access; it
overrides the attribute access support inherited from Persistent. A
user-defined __getattribute__() must always give the Persistent
base class a chance to handle special attribute, as well as __dict__ or
__class__. The user code should call _p_getattr(), passing the
name of the attribute as the only argument. If it returns True, the user code
should call Persistent’s __getattribute__() to get the value. If
not, the custom user code can run.

A __setattr__() hook will also override the Persistent
__setattr__() hook. User code must treat it much like
__getattribute__(). The user-defined code must call _p_setattr()
first to all Persistent to handle special attributes;
_p_setattr() takes the attribute name and value. If it returns True,
Persistent handled the attribute. If not, the user code can run. If
the user code modifies the object’s state, it must assigned to
_p_changed.

A __delattr__() hooks must be implemented the same was as a the last two
hooks. The user code must call _p_delattr(), passing the name of the
attribute as an argument. If the call returns True, Persistent handled
the attribute; if not, the user code can run.

__del__() methods

A __del__() method is invoked just before the memory occupied by an
unreferenced Python object is freed. Because ZODB may materialize, and
dematerialize, a given persistent object in memory any number of times, there
isn’t a meaningful relationship between when a persistent object’s
__del__() method gets invoked and any natural aspect of a persistent
object’s life cycle. For example, it is emphatically not the case that a
persistent object’s __del__() method gets invoked only when the object is
no longer referenced by other objects in the database. __del__() is only
concerned with reachability from objects in memory.

Worse, a __del__() method can interfere with the persistence machinery’s
goals. For example, some number of persistent objects reside in a
Connection’s memory cache. At various times, to reduce memory burden,
objects that haven’t been referenced recently are removed from the cache. If a
persistent object with a __del___() method is so removed, and the cache
was holding the last memory reference to the object, the object’s
__del__() method will be invoked. If the __del__() method then
references any attribute of the object, ZODB needs to load the object from the
database again, in order to satisfy the attribute reference. This puts the
object back into the cache again: such an object is effectively immortal,
occupying space in the memory cache forever, as every attempt to remove it from
cache puts it back into the cache. In ZODB versions prior to 3.2.2, this could
even cause the cache reduction code to fall into an infinite loop. The infinite
loop no longer occurs, but such objects continue to live in the memory cache
forever.

Because __del__() methods don’t make good sense for persistent objects,
and can create problems, persistent classes should not define __del__()
methods.

Writing Persistent Classes

Now that we’ve looked at the basics of programming using the ZODB, we’ll turn to
some more subtle tasks that are likely to come up for anyone using the ZODB in a
production system.

Changing Instance Attributes

Ideally, before making a class persistent you would get its interface right the
first time, so that no attributes would ever need to be added, removed, or have
their interpretation change over time. It’s a worthy goal, but also an
impractical one unless you’re gifted with perfect knowledge of the future. Such
unnatural foresight can’t be required of any person, so you therefore have to be
prepared to handle such structural changes gracefully. In object-oriented
database terminology, this is a schema update. The ZODB doesn’t have an actual
schema specification, but you’re changing the software’s expectations of the
data contained by an object, so you’re implicitly changing the schema.

One way to handle such a change is to write a one-time conversion program that
will loop over every single object in the database and update them to match the
new schema. This can be easy if your network of object references is quite
structured, making it easy to find all the instances of the class being
modified. For example, if all User objects can be found inside a
single dictionary or BTree, then it would be a simple matter to loop over every
User instance with a for statement. This is more difficult
if your object graph is less structured; if User objects can be found
as attributes of any number of different class instances, then there’s no longer
any easy way to find them all, short of writing a generalized object traversal
function that would walk over every single object in a ZODB, checking each one
to see if it’s an instance of User.

Some OODBs support a feature called extents, which allow quickly finding all the
instances of a given class, no matter where they are in the object graph;
unfortunately the ZODB doesn’t offer extents as a feature.

ZEO

How ZEO Works

The ZODB, as I’ve described it so far, can only be used within a single Python
process (though perhaps with multiple threads). ZEO, Zope Enterprise Objects,
extends the ZODB machinery to provide access to objects over a network. The
name “Zope Enterprise Objects” is a bit misleading; ZEO can be used to store
Python objects and access them in a distributed fashion without Zope ever
entering the picture. The combination of ZEO and ZODB is essentially a Python-
specific object database.

ZEO consists of about 12,000 lines of Python code, excluding tests. The code is
relatively small because it contains only code for a TCP/IP server, and for a
new type of Storage, ClientStorage. ClientStorage simply makes
remote procedure calls to the server, which then passes them on a regular
Storage class such as FileStorage. The following diagram lays
out the system:

XXX insert diagram here later

Any number of processes can create a ClientStorage instance, and any
number of threads in each process can be using that instance.
ClientStorage aggressively caches objects locally, so in order to avoid
using stale data the ZEO server sends an invalidation message to all the
connected ClientStorage instances on every write operation. The
invalidation message contains the object ID for each object that’s been
modified, letting the ClientStorage instances delete the old data for
the given object from their caches.

This design decision has some consequences you should be aware of. First, while
ZEO isn’t tied to Zope, it was first written for use with Zope, which stores
HTML, images, and program code in the database. As a result, reads from the
database are far more frequent than writes, and ZEO is therefore better suited
for read-intensive applications. If every ClientStorage is writing to
the database all the time, this will result in a storm of invalidate messages
being sent, and this might take up more processing time than the actual database
operations themselves. These messages are small and sent in batches, so there
would need to be a lot of writes before it became a problem.

On the other hand, for applications that have few writes in comparison to the
number of read accesses, this aggressive caching can be a major win. Consider a
Slashdot-like discussion forum that divides the load among several Web servers.
If news items and postings are represented by objects and accessed through ZEO,
then the most heavily accessed objects – the most recent or most popular
postings – will very quickly wind up in the caches of the
ClientStorage instances on the front-end servers. The back-end ZEO
server will do relatively little work, only being called upon to return the
occasional older posting that’s requested, and to send the occasional invalidate
message when a new posting is added. The ZEO server isn’t going to be contacted
for every single request, so its workload will remain manageable.

Installing ZEO

This section covers how to install the ZEO package, and how to configure and
run a ZEO Storage Server on a machine.

Requirements

The ZEO server software is included in ZODB3. As with the rest of ZODB3, you’ll
need Python 2.3 or higher.

Running a server

The runzeo.py script in the ZEO directory can be used to start a server. Run it
with the -h option to see the various values. If you’re just experimenting, a
good choise is to use python ZEO/runzeo.py -a /tmp/zeosocket -f
/tmp/test.fs to run ZEO with a Unix domain socket and a FileStorage.

Testing the ZEO Installation

Once a ZEO server is up and running, using it is just like using ZODB with a
more conventional disk-based storage; no new programming details are introduced
by using a remote server. The only difference is that programs must create a
ClientStorage instance instead of a FileStorage instance.
From that point onward, ZODB-based code is happily unaware that objects are
being retrieved from a ZEO server, and not from the local disk.

As an example, and to test whether ZEO is working correctly, try running the
following lines of code, which will connect to the server, add some bits of data
to the root of the ZODB, and commits the transaction:

from ZEO import ClientStorage
from ZODB import DB
import transaction

Change next line to connect to your ZEO server
addr = 'kronos.example.com', 1975
storage = ClientStorage.ClientStorage(addr)
db = DB(storage)
conn = db.open()
root = conn.root()

Store some things in the root
root['list'] = ['a', 'b', 1.0, 3]
root['dict'] = {'a':1, 'b':4}

Commit the transaction
transaction.commit()

If this code runs properly, then your ZEO server is working correctly.

You can also use a configuration file.

<zodb>
 <zeoclient>
 server localhost:9100
 </zeoclient>
</zodb>

One nice feature of the configuration file is that you don’t need to specify
imports for a specific storage. That makes the code a little shorter and allows
you to change storages without changing the code.

import ZODB.config

db = ZODB.config.databaseFromURL('/tmp/zeo.conf')

ZEO Programming Notes

ZEO is written using asyncore [https://docs.python.org/3/library/asyncore.html#module-asyncore], from the Python standard library. It
assumes that some part of the user application is running an asyncore [https://docs.python.org/3/library/asyncore.html#module-asyncore]
mainloop. For example, Zope run the loop in a separate thread and ZEO uses
that. If your application does not have a mainloop, ZEO will not process
incoming invalidation messages until you make some call into ZEO. The
Connection.sync() method can be used to process pending invalidation
messages. You can call it when you want to make sure the Connection
has the most recent version of every object, but you don’t have any other work
for ZEO to do.

Sample Application: chatter.py

For an example application, we’ll build a little chat application. What’s
interesting is that none of the application’s code deals with network
programming at all; instead, an object will hold chat messages, and be
magically shared between all the clients through ZEO. I won’t present the
complete script here; you can download it from chatter.py. Only the interesting portions of the code will be covered here.

The basic data structure is the ChatSession object, which provides an
add_message() method that adds a message, and a new_messages()
method that returns a list of new messages that have accumulated since the last
call to new_messages(). Internally, ChatSession maintains a
B-tree that uses the time as the key, and stores the message as the
corresponding value.

The constructor for ChatSession is pretty simple; it simply creates an
attribute containing a B-tree:

class ChatSession(Persistent):
 def __init__(self, name):
 self.name = name
 # Internal attribute: _messages holds all the chat messages.
 self._messages = BTrees.OOBTree.OOBTree()

add_message() has to add a message to the _messages B-tree. A
complication is that it’s possible that some other client is trying to add a
message at the same time; when this happens, the client that commits first wins,
and the second client will get a ConflictError exception when it tries to
commit. For this application, ConflictError isn’t serious but simply
means that the operation has to be retried; other applications might treat it as
a fatal error. The code uses try...except...else inside a while loop,
breaking out of the loop when the commit works without raising an exception.

def add_message(self, message):
 """Add a message to the channel.
 message -- text of the message to be added
 """

 while 1:
 try:
 now = time.time()
 self._messages[now] = message
 get_transaction().commit()
 except ConflictError:
 # Conflict occurred; this process should abort,
 # wait for a little bit, then try again.
 transaction.abort()
 time.sleep(.2)
 else:
 # No ConflictError exception raised, so break
 # out of the enclosing while loop.
 break
 # end while

new_messages() introduces the use of volatile attributes. Attributes of
a persistent object that begin with _v_ are considered volatile and are
never stored in the database. new_messages() needs to store the last time
the method was called, but if the time was stored as a regular attribute, its
value would be committed to the database and shared with all the other clients.
new_messages() would then return the new messages accumulated since any
other client called new_messages(), which isn’t what we want.

def new_messages(self):
 "Return new messages."

 # self._v_last_time is the time of the most recent message
 # returned to the user of this class.
 if not hasattr(self, '_v_last_time'):
 self._v_last_time = 0

 new = []
 T = self._v_last_time

 for T2, message in self._messages.items():
 if T2 > T:
 new.append(message)
 self._v_last_time = T2

 return new

This application is interesting because it uses ZEO to easily share a data
structure; ZEO and ZODB are being used for their networking ability, not
primarily for their data storage ability. I can foresee many interesting
applications using ZEO in this way:

	With a Tkinter front-end, and a cleverer, more scalable data structure, you
could build a shared whiteboard using the same technique.

	A shared chessboard object would make writing a networked chess game easy.

	You could create a Python class containing a CD’s title and track information.
To make a CD database, a read-only ZEO server could be opened to the world, or
an HTTP or XML-RPC interface could be written on top of the ZODB.

	A program like Quicken could use a ZODB on the local disk to store its data.
This avoids the need to write and maintain specialized I/O code that reads in
your objects and writes them out; instead you can concentrate on the problem
domain, writing objects that represent cheques, stock portfolios, or whatever.

Transactions and Versioning

Committing and Aborting

Changes made during a transaction don’t appear in the database until the
transaction commits. This is done by calling the commit() method of the
current Transaction object, where the latter is obtained from the
get() method of the current transaction manager. If the default thread
transaction manager is being used, then transaction.commit() suffices.

Similarly, a transaction can be explicitly aborted (all changes within the
transaction thrown away) by invoking the abort() method of the current
Transaction object, or simply transaction.abort() if using the
default thread transaction manager.

Prior to ZODB 3.3, if a commit failed (meaning the commit() call raised an
exception), the transaction was implicitly aborted and a new transaction was
implicitly started. This could be very surprising if the exception was
suppressed, and especially if the failing commit was one in a sequence of
subtransaction commits.

So, starting with ZODB 3.3, if a commit fails, all further attempts to commit,
join, or register with the transaction raise
ZODB.POSException.TransactionFailedError. You must explicitly start a
new transaction then, either by calling the abort() method of the current
transaction, or by calling the begin() method of the current transaction’s
transaction manager.

Subtransactions

Subtransactions can be created within a transaction. Each subtransaction can be
individually committed and aborted, but the changes within a subtransaction are
not truly committed until the containing transaction is committed.

The primary purpose of subtransactions is to decrease the memory usage of
transactions that touch a very large number of objects. Consider a transaction
during which 200,000 objects are modified. All the objects that are modified in
a single transaction have to remain in memory until the transaction is
committed, because the ZODB can’t discard them from the object cache. This can
potentially make the memory usage quite large. With subtransactions, a commit
can be be performed at intervals, say, every 10,000 objects. Those 10,000
objects are then written to permanent storage and can be purged from the cache
to free more space.

To commit a subtransaction instead of a full transaction, pass a true value to
the commit() or abort() method of the Transaction object.

Commit a subtransaction
transaction.commit(True)

Abort a subtransaction
transaction.abort(True)

A new subtransaction is automatically started upon successful committing or
aborting the previous subtransaction.

Undoing Changes

Some types of Storage support undoing a transaction even after it’s
been committed. You can tell if this is the case by calling the
supportsUndo() method of the DB instance, which returns true if
the underlying storage supports undo. Alternatively you can call the
supportsUndo() method on the underlying storage instance.

If a database supports undo, then the undoLog(start, end[, func])() method
on the DB instance returns the log of past transactions, returning
transactions between the times start and end, measured in seconds from the
epoch. If present, func is a function that acts as a filter on the
transactions to be returned; it’s passed a dictionary representing each
transaction, and only transactions for which func returns true will be
included in the list of transactions returned to the caller of undoLog().
The dictionary contains keys for various properties of the transaction. The
most important keys are id, for the transaction ID, and time, for the
time at which the transaction was committed.

>>> print storage.undoLog(0, sys.maxint)
[{'description': '',
 'id': 'AzpGEGqU/0QAAAAAAAAGMA',
 'time': 981126744.98,
 'user_name': ''},
 {'description': '',
 'id': 'AzpGC/hUOKoAAAAAAAAFDQ',
 'time': 981126478.202,
 'user_name': ''}
 ...

To store a description and a user name on a commit, get the current transaction
and call the note(text)() method to store a description, and the
setUser(user_name)() method to store the user name. While setUser()
overwrites the current user name and replaces it with the new value, the
note() method always adds the text to the transaction’s description, so it
can be called several times to log several different changes made in the course
of a single transaction.

transaction.get().setUser('amk')
transaction.get().note('Change ownership')

To undo a transaction, call the DB.undo(id)() method, passing it the ID of
the transaction to undo. If the transaction can’t be undone, a
ZODB.POSException.UndoError exception will be raised, with the message
“non-undoable transaction”. Usually this will happen because later transactions
modified the objects affected by the transaction you’re trying to undo.

After you call undo() you must commit the transaction for the undo to
actually be applied. 1 There is one glitch in the undo process. The thread
that calls undo may not see the changes to the object until it calls
Connection.sync() or commits another transaction.

Versions

Warning

Versions should be avoided. They’re going to be deprecated, replaced by better
approaches to long-running transactions.

While many subtransactions can be contained within a single regular transaction,
it’s also possible to contain many regular transactions within a long-running
transaction, called a version in ZODB terminology. Inside a version, any number
of transactions can be created and committed or rolled back, but the changes
within a version are not made visible to other connections to the same ZODB.

Not all storages support versions, but you can test for versioning ability by
calling supportsVersions() method of the DB instance, which
returns true if the underlying storage supports versioning.

A version can be selected when creating the Connection instance using
the DB.open([*version*])() method. The version argument must be a string
that will be used as the name of the version.

vers_conn = db.open(version='Working version')

Transactions can then be committed and aborted using this versioned connection.
Other connections that don’t specify a version, or provide a different version
name, will not see changes committed within the version named Working
version. To commit or abort a version, which will either make the changes
visible to all clients or roll them back, call the DB.commitVersion() or
DB.abortVersion() methods. XXX what are the source and dest arguments for?

The ZODB makes no attempt to reconcile changes between different versions.
Instead, the first version which modifies an object will gain a lock on that
object. Attempting to modify the object from a different version or from an
unversioned connection will cause a ZODB.POSException.VersionLockError to
be raised:

from ZODB.POSException import VersionLockError

try:
 transaction.commit()
except VersionLockError, (obj_id, version):
 print ('Cannot commit; object %s '
 'locked by version %s' % (obj_id, version))

The exception provides the ID of the locked object, and the name of the version
having a lock on it.

Multithreaded ZODB Programs

ZODB databases can be accessed from multithreaded Python programs. The
Storage and DB instances can be shared among several threads,
as long as individual Connection instances are created for each thread.

Footnotes

	1

	There are actually two different ways a storage can implement the undo feature.
Most of the storages that ship with ZODB use the transactional form of undo
described in the main text. Some storages may use a non-transactional undo
makes changes visible immediately.

Related Modules

The ZODB package includes a number of related modules that provide useful data
types such as BTrees.

persistent.mapping.PersistentMapping

The PersistentMapping class is a wrapper for mapping objects that will
set the dirty bit when the mapping is modified by setting or deleting a key.

	
PersistentMapping(container = {})

	Create a PersistentMapping object that wraps the mapping object
container. If you don’t specify a value for container, a regular Python
dictionary is used.

PersistentMapping objects support all the same methods as Python
dictionaries do.

persistent.list.PersistentList

The PersistentList class is a wrapper for mutable sequence objects,
much as PersistentMapping is a wrapper for mappings.

	
PersistentList(initlist = [])

	Create a PersistentList object that wraps the mutable sequence object
initlist. If you don’t specify a value for initlist, a regular Python list
is used.

PersistentList objects support all the same methods as Python lists do.

BTrees Package

When programming with the ZODB, Python dictionaries aren’t always what you need.
The most important case is where you want to store a very large mapping. When a
Python dictionary is accessed in a ZODB, the whole dictionary has to be
unpickled and brought into memory. If you’re storing something very large, such
as a 100,000-entry user database, unpickling such a large object will be slow.
BTrees are a balanced tree data structure that behave like a mapping but
distribute keys throughout a number of tree nodes. The nodes are stored in
sorted order (this has important consequences – see below). Nodes are then
only unpickled and brought into memory as they’re accessed, so the entire tree
doesn’t have to occupy memory (unless you really are touching every single key).

The BTrees package provides a large collection of related data structures.
There are variants of the data structures specialized to integers, which are
faster and use less memory. There are five modules that handle the different
variants. The first two letters of the module name specify the types of the
keys and values in mappings – O for any object, I for 32-bit signed integer,
and (new in ZODB 3.4) F for 32-bit C float. For example, the
BTrees.IOBTree [https://btrees.readthedocs.io/en/latest/api.html#module-BTrees.IOBTree] module provides a mapping with integer keys and arbitrary
objects as values.

The four data structures provide by each module are a BTree, a Bucket, a
TreeSet, and a Set. The BTree and Bucket types are mappings and support all the
usual mapping methods, e.g. update() and keys(). The TreeSet and
Set types are similar to mappings but they have no values; they support the
methods that make sense for a mapping with no keys, e.g. keys() but not
items(). The Bucket and Set types are the individual building blocks for
BTrees and TreeSets, respectively. A Bucket or Set can be used when you are
sure that it will have few elements. If the data structure will grow large, you
should use a BTree or TreeSet. Like Python lists, Buckets and Sets are allocated
in one contiguous piece, and insertions and deletions can take time proportional
to the number of existing elements. Also like Python lists, a Bucket or Set is
a single object, and is pickled and unpickled in its entirety. BTrees and
TreeSets are multi-level tree structures with much better (logarithmic) worst-
case time bounds, and the tree structure is built out of multiple objects, which
ZODB can load individually as needed.

The five modules are named OOBTree, IOBTree, OIBTree,
IIBTree, and (new in ZODB 3.4) IFBTree. The two letter prefixes
are repeated in the data types names. The BTrees.OOBTree [https://btrees.readthedocs.io/en/latest/api.html#module-BTrees.OOBTree] module defines
the following types: OOBTree, OOBucket, OOSet, and
OOTreeSet. Similarly, the other four modules each define their own
variants of those four types.

The keys(), values(), and items() methods on BTree and TreeSet
types do not materialize a list with all of the data. Instead, they return lazy
sequences that fetch data from the BTree as needed. They also support optional
arguments to specify the minimum and maximum values to return, often called
“range searching”. Because all these types are stored in sorted order, range
searching is very efficient.

The keys(), values(), and items() methods on Bucket and Set
types do return lists with all the data. Starting in ZODB 3.3, there are also
iterkeys(), itervalues(), and iteritems() methods that return
iterators (in the Python 2.2 sense). Those methods also apply to BTree and
TreeSet objects.

A BTree object supports all the methods you would expect of a mapping, with a
few extensions that exploit the fact that the keys are sorted. The example below
demonstrates how some of the methods work. The extra methods are minKey()
and maxKey(), which find the minimum and maximum key value subject to an
optional bound argument, and byValue(), which should probably be ignored
(it’s hard to explain exactly what it does, and as a result it’s almost never
used – best to consider it deprecated). The various methods for enumerating
keys, values and items also accept minimum and maximum key arguments (“range
search”), and (new in ZODB 3.3) optional Boolean arguments to control whether a
range search is inclusive or exclusive of the range’s endpoints.

>>> from BTrees.OOBTree import OOBTree
>>> t = OOBTree()
>>> t.update({1: "red", 2: "green", 3: "blue", 4: "spades"})
>>> len(t)
4
>>> t[2]
'green'
>>> s = t.keys() # this is a "lazy" sequence object
>>> s
<OOBTreeItems object at 0x0088AD20>
>>> len(s) # it acts like a Python list
4
>>> s[-2]
3
>>> list(s) # materialize the full list
[1, 2, 3, 4]
>>> list(t.values())
['red', 'green', 'blue', 'spades']
>>> list(t.values(1, 2)) # values at keys in 1 to 2 inclusive
['red', 'green']
>>> list(t.values(2)) # values at keys >= 2
['green', 'blue', 'spades']
>>> list(t.values(min=1, max=4)) # keyword args new in ZODB 3.3
['red', 'green', 'blue', 'spades']
>>> list(t.values(min=1, max=4, excludemin=True, excludemax=True))
['green', 'blue']
>>> t.minKey() # smallest key
1
>>> t.minKey(1.5) # smallest key >= 1.5
2
>>> for k in t.keys():
... print k,
1 2 3 4
>>> for k in t: # new in ZODB 3.3
... print k,
1 2 3 4
>>> for pair in t.iteritems(): # new in ZODB 3.3
... print pair,
...
(1, 'red') (2, 'green') (3, 'blue') (4, 'spades')
>>> t.has_key(4) # returns a true value, but exactly what undefined
2
>>> t.has_key(5)
0
>>> 4 in t # new in ZODB 3.3
True
>>> 5 in t # new in ZODB 3.3
False
>>>

Each of the modules also defines some functions that operate on BTrees –
difference(), union(), and intersection(). The
difference() function returns a Bucket, while the other two methods return
a Set. If the keys are integers, then the module also defines
multiunion(). If the values are integers or floats, then the module also
defines weightedIntersection() and weightedUnion(). The function
doc strings describe each function briefly.

BTrees/Interfaces.py defines the operations, and is the official
documentation. Note that the interfaces don’t define the concrete types
returned by most operations, and you shouldn’t rely on the concrete types that
happen to be returned: stick to operations guaranteed by the interface. In
particular, note that the interfaces don’t specify anything about comparison
behavior, and so nothing about it is guaranteed. In ZODB 3.3, for example, two
BTrees happen to use Python’s default object comparison, which amounts to
comparing the (arbitrary but fixed) memory addresses of the BTrees. This may or
may not be true in future releases. If the interfaces don’t specify a behavior,
then whether that behavior appears to work, and exactly happens if it does
appear to work, are undefined and should not be relied on.

Total Ordering and Persistence

The BTree-based data structures differ from Python dicts in several fundamental
ways. One of the most important is that while dicts require that keys support
hash codes and equality comparison, the BTree-based structures don’t use hash
codes and require a total ordering on keys.

Total ordering means three things:

	Reflexive. For each x, x == x is true.

	Trichotomy. For each x and y, exactly one of x < y, x == y, and
x > y is true.

	Transitivity. Whenever x <= y and y <= z, it’s also true that x <=
z.

The default comparison functions for most objects that come with Python satisfy
these rules, with some crucial cautions explained later. Complex numbers are an
example of an object whose default comparison function does not satisfy these
rules: complex numbers only support == and != comparisons, and raise an
exception if you try to compare them in any other way. They don’t satisfy the
trichotomy rule, and must not be used as keys in BTree-based data structures
(although note that complex numbers can be used as keys in Python dicts, which
do not require a total ordering).

Examples of objects that are wholly safe to use as keys in BTree-based
structures include ints, longs, floats, 8-bit strings, Unicode strings, and
tuples composed (possibly recursively) of objects of wholly safe types.

It’s important to realize that even if two types satisfy the rules on their own,
mixing objects of those types may not. For example, 8-bit strings and Unicode
strings both supply total orderings, but mixing the two loses trichotomy; e.g.,
'x' < chr(255) and u'x' == 'x', but trying to compare chr(255) to
u'x' raises an exception. Partly for this reason (another is given later),
it can be dangerous to use keys with multiple types in a single BTree-based
structure. Don’t try to do that, and you don’t have to worry about it.

Another potential problem is mutability: when a key is inserted in a BTree-
based structure, it must retain the same order relative to the other keys over
time. This is easy to run afoul of if you use mutable objects as keys. For
example, lists supply a total ordering, and then

>>> L1, L2, L3 = [1], [2], [3]
>>> from BTrees.OOBTree import OOSet
>>> s = OOSet((L2, L3, L1)) # this is fine, so far
>>> list(s.keys()) # note that the lists are in sorted order
[[1], [2], [3]]
>>> s.has_key([3]) # and [3] is in the set
1
>>> L2[0] = 5 # horrible -- the set is insane now
>>> s.has_key([3]) # for example, it's insane this way
0
>>> s
OOSet([[1], [5], [3]])
>>>

Key lookup relies on that the keys remain in sorted order (an efficient form of
binary search is used). By mutating key L2 after inserting it, we destroyed the
invariant that the OOSet is sorted. As a result, all future operations on this
set are unpredictable.

A subtler variant of this problem arises due to persistence: by default, Python
does several kinds of comparison by comparing the memory addresses of two
objects. Because Python never moves an object in memory, this does supply a
usable (albeit arbitrary) total ordering across the life of a program run (an
object’s memory address doesn’t change). But if objects compared in this way
are used as keys of a BTree-based structure that’s stored in a database, when
the objects are loaded from the database again they will almost certainly wind
up at different memory addresses. There’s no guarantee then that if key K1 had
a memory address smaller than the memory address of key K2 at the time K1 and K2
were inserted in a BTree, K1’s address will also be smaller than K2’s when that
BTree is loaded from a database later. The result will be an insane BTree,
where various operations do and don’t work as expected, seemingly at random.

Now each of the types identified above as “wholly safe to use” never compares
two instances of that type by memory address, so there’s nothing to worry about
here if you use keys of those types. The most common mistake is to use keys
that are instances of a user-defined class that doesn’t supply its own
__cmp__() method. Python compares such instances by memory address. This
is fine if such instances are used as keys in temporary BTree-based structures
used only in a single program run. It can be disastrous if that BTree-based
structure is stored to a database, though.

>>> class C:
... pass
...
>>> a, b = C(), C()
>>> print a < b # this may print 0 if you try it
1
>>> del a, b
>>> a, b = C(), C()
>>> print a < b # and this may print 0 or 1
0
>>>

That example illustrates that comparison of instances of classes that don’t
define __cmp__() yields arbitrary results (but consistent results within a
single program run).

Another problem occurs with instances of classes that do define __cmp__(),
but define it incorrectly. It’s possible but rare for a custom __cmp__()
implementation to violate one of the three required formal properties directly.
It’s more common for it to “fall back” to address-based comparison by mistake.
For example:

class Mine:
 def __cmp__(self, other):
 if other.__class__ is Mine:
 return cmp(self.data, other.data)
 else:
 return cmp(self.data, other)

It’s quite possible there that the else clause allows a result to be
computed based on memory address. The bug won’t show up until a BTree-based
structure uses objects of class Mine as keys, and also objects of other
types as keys, and the structure is loaded from a database, and a sequence of
comparisons happens to execute the else clause in a case where the
relative order of object memory addresses happened to change.

This is as difficult to track down as it sounds, so best to stay far away from
the possibility.

You’ll stay out of trouble by follwing these rules, violating them only with
great care:

	Use objects of simple immutable types as keys in BTree-based data structures.

	Within a single BTree-based data structure, use objects of a single type as
keys. Don’t use multiple key types in a single structure.

	If you want to use class instances as keys, and there’s any possibility that
the structure may be stored in a database, it’s crucial that the class define a
__cmp__() method, and that the method is carefully implemented.

Any part of a comparison implementation that relies (explicitly or implicitly)
on an address-based comparison result will eventually cause serious failure.

	Do not use Persistent objects as keys, or objects of a subclass of
Persistent.

That last item may be surprising. It stems from details of how conflict
resolution is implemented: the states passed to conflict resolution do not
materialize persistent subobjects (if a persistent object P is a key in a BTree,
then P is a subobject of the bucket containing P). Instead, if an object O
references a persistent subobject P directly, and O is involved in a conflict,
the states passed to conflict resolution contain an instance of an internal
PersistentReference stub class everywhere O references P. Two
PersistentReference instances compare equal if and only if they
“represent” the same persistent object; when they’re not equal, they compare by
memory address, and, as explained before, memory-based comparison must never
happen in a sane persistent BTree. Note that it doesn’t help in this case if
your Persistent subclass defines a sane __cmp__() method:
conflict resolution doesn’t know about your class, and so also doesn’t know
about its __cmp__() method. It only sees instances of the internal
PersistentReference stub class.

Iteration and Mutation

As with a Python dictionary or list, you should not mutate a BTree-based data
structure while iterating over it, except that it’s fine to replace the value
associated with an existing key while iterating. You won’t create internal
damage in the structure if you try to remove, or add new keys, while iterating,
but the results are undefined and unpredictable. A weak attempt is made to
raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if the size of a BTree-based structure changes while
iterating, but it doesn’t catch most such cases, and is also unreliable.
Example:

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> list(s)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for i in s: # the output is undefined
... print i,
... s.remove(i)
0 2 4 6 8
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
RuntimeError: the bucket being iterated changed size
>>> list(s) # this output is also undefined
[1, 3, 5, 7, 9]
>>>

Also as with Python dictionaries and lists, the safe and predictable way to
mutate a BTree-based structure while iterating over it is to iterate over a copy
of the keys. Example:

>>> from BTrees.IIBTree import *
>>> s = IISet(range(10))
>>> for i in list(s.keys()): # this is well defined
... print i,
... s.remove(i)
0 1 2 3 4 5 6 7 8 9
>>> list(s)
[]
>>>

BTree Diagnostic Tools

A BTree (or TreeSet) is a complex data structure, really a graph of variable-
size nodes, connected in multiple ways via three distinct kinds of C pointers.
There are some tools available to help check internal consistency of a BTree as
a whole.

Most generally useful is the BTrees.check [https://btrees.readthedocs.io/en/latest/api.html#module-BTrees.check] module. The
check.check() function examines a BTree (or Bucket, Set, or TreeSet) for
value-based consistency, such as that the keys are in strictly increasing order.
See the function docstring for details. The check.display() function
displays the internal structure of a BTree.

BTrees and TreeSets also have a _check() method. This verifies that the
(possibly many) internal pointers in a BTree or TreeSet are mutually consistent,
and raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] if they’re not.

If a check.check() or _check() call fails, it may point to a bug in
the implementation of BTrees or conflict resolution, or may point to database
corruption.

Repairing a damaged BTree is usually best done by making a copy of it. For
example, if self.data is bound to a corrupted IOBTree,

self.data = IOBTree(self.data)

usually suffices. If object identity needs to be preserved,

acopy = IOBTree(self.data)
self.data.clear()
self.data.update(acopy)

does the same, but leaves self.data bound to the same object.

Resources

Introduction to the Zope Object Database, by Jim Fulton: — Goes into much
greater detail, explaining advanced uses of the ZODB and how it’s actually
implemented. A definitive reference, and highly recommended. —
http://www.python.org/workshops/2000-01/proceedings/papers/fulton/zodb3.html

Persistent Programing with ZODB, by Jeremy Hylton and Barry Warsaw: — Slides
for a tutorial presented at the 10th Python conference. Covers much of the same
ground as this guide, with more details in some areas and less in others. —
http://www.zope.org/Members/bwarsaw/ipc10-slides

GNU Free Documentation License

Version 1.1, March 2000 —

Copyright 2000 Free Software Foundation, Inc. — 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA — Everyone is permitted to copy
and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent copy of the
Document, free of added material, which the general network-using public has
access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

	Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

	List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its
principal authors, if it has less than five).

	State on the Title page the name of the publisher of the Modified Version, as
the publisher.

	Preserve all the copyright notices of the Document.

	Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

	Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

	Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

	Include an unaltered copy of this License.

	Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

	Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

	In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

	Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

	Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

	Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity. If
the Document already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the
whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original
English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

Future Revisions of This Licence

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A
copy of the license is included in the section entitled “GNU Free Documentation
License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of
saying which ones are invariant. If you have no Front-Cover Texts, write “no
Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-
Cover Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

Using zc.zodbdgc (fix PosKeyError’s)

This article was written by Hanno Schlichting

The zc.zodbdgc [https://pypi.org/project/zc.zodbdgc/] library contains two
useful features. On the one hand it supports advanced ZODB packing and garbage
collection approaches and on the other hand it includes the ability to create a
database of all persistent references.

The second feature allows us to debug and repair PosKeyErrors by finding the
persistent object(s) that point to the lost object.

Note

This documentation applies to ZODB 3.9 and later. Earlier versions of the
ZODB are not supported, as they lack the fast storage iteration API’s required
by zc.zodbdgc.

Note

Unless you’re using multi-databases, this documentation does not apply to
RelStorage [https://pypi.org/project/RelStorage/] which has the same
features built-in, but accessible in different ways. Look at the options for
the zodbpack script. The --prepack option creates a table containing the
same information as we are creating in the reference database.

If you are using multi-databases, be aware that RelStorage 2.0 is needed to
perform packing and garbage collection with zc.zodbdgc, and those features only
work in history-free databases.

It’s important to realize that there is currently no way to perform garbage collection
in a history-preserving multi-database RelStorage.

Setup

We’ll assume you are familiar with a buildout setup. A typical config might
look like this:

[buildout]
parts =
 zeo
 zeopy
 zeo-conf
 zodbdgc
 refdb-conf

[zeo]
recipe = plone.recipe.zeoserver
zeo-address = 127.0.0.1:8100
blob-storage = ${buildout:directory}/var/blobstorage
pack-gc = false
pack-keep-old = false

[zeopy]
recipe = zc.recipe.egg
eggs =
 ZODB3
 zc.zodbdgc
interpreter = zeopy
scripts = zeopy

[zeo-conf]
recipe = collective.recipe.template
input = inline:
 <zodb main>
 <zeoclient>
 blob-dir ${buildout:directory}/var/blobstorage
 shared-blob-dir yes
 server ${zeo:zeo-address}
 storage 1
 name zeostorage
 var ${buildout:directory}/var
 </zeoclient>
 </zodb>
output = ${buildout:directory}/etc/zeo.conf

[zodbdgc]
recipe = zc.recipe.egg
eggs = zc.zodbdgc

[refdb-conf]
recipe = collective.recipe.template
input = inline:
 <zodb main>
 <filestorage 1>
 path ${buildout:directory}/var/refdb.fs
 </filestorage>
 </zodb>
output = ${buildout:directory}/etc/refdb.conf

Garbage collection

We configured the ZEO server to skip garbage collection as part of the normal
pack in the above config (pack-gc = false). Instead we use explicit garbage
collection via a different job:

bin/multi-zodb-gc etc/zeo.conf

On larger databases garbage collection can take a couple hours. We can run this
only once a week or even less frequent. All explicitly deleted objects will
still be packed away by the normal pack, so the database doesn’t grow
out-of-bound. We can also run the analysis against a database copy, taking away
load from the live database and only write the resulting deletions to the
production database.

Packing

We can do regular packing every day while the ZEO server is running, via:

bin/zeopack

Packing without garbage collection is much faster.

Reference analysis and POSKeyErrors

If our database has any POSKeyErrors, we can find and repair those.

Either we already have the oids of lost objects, or we can check the entire
database for any errors. To check everything we run the following command:

$ bin/multi-zodb-check-refs etc/zeo.conf

This can take about 15 to 30 minutes on moderately sized databases of up to
10gb, dependent on disk speed. We’ll write down the reported errors, as we’ll
need them later on to analyze them.

If there are any lost objects, we can create a reference database to make it
easier to debug and find those lost objects:

$ bin/multi-zodb-check-refs -r var/refdb.fs etc/zeo.conf

This is significantly slower and can take several hours to complete. Once this
is complete we can open the generated database via our interpreter:

$ bin/zeopy

>>> import ZODB.config
>>> db = ZODB.config.databaseFromFile(open('./etc/refdb.conf'))
>>> conn = db.open()
>>> refs = conn.root()['references']

If we’ve gotten this error report:

!!! main 13184375 ?
POSKeyError: 0xc92d77

We can look up the persistent oid it was referenced from via:

>>> parent = list(refs['main'][13184375])
>>> parent
[13178389]

We can also get the hex representation:

>>> from ZODB.utils import p64
>>> p64(parent[0])
'\x00\x00\x00\x00\x00\xc9\x16\x15'

With this information, we should get back to our actual database and look
up this object. We’ll leave the ref db open, as we might need to recursively
look up some more objects, until we get one we can identify and work on.

We could load the parent. In a debug prompt we could do something like:

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9\x16\x15')
2010-04-28 14:28:28 ERROR ZODB.Connection Couldn't load state for 0xc91615
Traceback (most recent call last):
...
ZODB.POSException.POSKeyError: 0xc92d77

Gah, this gives us the POSKeyError of course. But we can load the actual data
of the parent, to get an idea of what this is:

>>> app._p_jar.db()._storage.load('\x00\x00\x00\x00\x00\xc9\x16\x15', '')
('cBTrees.IOBTree
IOBucket
q\x01.((J$KT\x02ccopy_reg
_reconstructor
q\x02(cfive.intid.keyreference
KeyReferenceToPersistent
...

Now we can be real evil and create a new fake object in place of the missing
one:

>>> import transaction
>>> transaction.begin()

The persistent oid that was reported missing was 13184375:

>>> from ZODB.utils import p64
>>> p64(13184375)
'\x00\x00\x00\x00\x00\xc9-w'

>>> from persistent import Persistent
>>> a = Persistent()
>>> a._p_oid = '\x00\x00\x00\x00\x00\xc9-w'

We cannot use the add method of the connection, as this would assign the
object a new persistent oid. So we replicate its internals here:

>>> a._p_jar = app._p_jar
>>> app._p_jar._register(a)
>>> app._p_jar._added[a._p_oid] = a

>>> transaction.commit()

Both getting the object as well as its parent will work now:

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9-w')
<persistent.Persistent object at 0xa3e348c>

>>> app._p_jar.get('\x00\x00\x00\x00\x00\xc9\x16\x15')
BTrees.IOBTree.IOBucket([(39078692, <five.intid.keyreference...

Once we are finished we should be nice and close all databases:

>>> conn.close()
>>> db.close()

Depending on the class of object that went missing, we might need to use a
different persistent class, like a persistent mapping or a BTree bucket.

In general it’s best to remove the parent object and thus our fake object from
the database and rebuild the data structure again via the proper application
level API’s.

Conflict Resolution

Overview

Conflict resolution is a way to resolve transaction conflicts that would
otherwise abort a transaction. As such, it risks data integrity in order to
try to avoid throwing away potentially computationally expensive transactions.

The risk of harming data integrity should not be underestimated. Writing
conflict resolution code takes some responsibility for transactional
integrity away from the ZODB, and puts it in the hands of the developer
writing the conflict resolution code.

The current conflict resolution code is implemented with a storage mix-in
found in ZODB/ConflictResolution.py. The idea’s proposal, and an explanation
of the interface, can be found here:
http://www.zope.org/Members/jim/ZODB/ApplicationLevelConflictResolution

Here is the most pertinent section, somewhat modified for this document’s
use:

A new interface is proposed to allow object authors to provide a method
for resolving conflicts. When a conflict is detected, then the database
checks to see if the class of the object being saved defines the method,
_p_resolveConflict. If the method is defined, then the method is called
on the object. If the method succeeds, then the object change can be
committed, otherwise a ConflictError is raised as usual.

	def _p_resolveConflict(oldState, savedState, newState):

	Return the state of the object after resolving different changes.

Arguments:

	oldState

	The state of the object that the changes made by the current
transaction were based on.

The method is permitted to modify this value.

	savedState

	The state of the object that is currently stored in the
database. This state was written after oldState and reflects
changes made by a transaction that committed before the
current transaction.

The method is permitted to modify this value.

	newState

	The state after changes made by the current transaction.

The method is not permitted to modify this value.

This method should compute a new state by merging changes
reflected in savedState and newState, relative to oldState.

If the method cannot resolve the changes, then it should raise
ZODB.POSException.ConflictError.

Consider an extremely simple example, a counter:

from persistent import Persistent
class PCounter(Persistent):
 '`value` is readonly; increment it with `inc`.'

 # Fool BTree checks for sane comparison :/
 def __cmp__(self, other):
 return object.__cmp__(self, other)
 def __lt__(self, other):
 return object.__lt__(self, other)

 _val = 0
 def inc(self):
 self._val += 1
 @property
 def value(self):
 return self._val
 def _p_resolveConflict(self, oldState, savedState, newState):
 oldState['_val'] = (
 savedState.get('_val', 0) +
 newState.get('_val', 0) -
 oldState.get('_val', 0))
 return oldState

By “state”, the excerpt above means the value used by __getstate__ and
__setstate__: a dictionary, in most cases. We’ll look at more details below,
but let’s continue the example above with a simple successful resolution
story.

First we create a storage and a database, and put a PCounter in the database.

>>> import ZODB
>>> db = ZODB.DB('Data.fs')
>>> import transaction
>>> tm_A = transaction.TransactionManager()
>>> conn_A = db.open(transaction_manager=tm_A)
>>> p_A = conn_A.root()['p'] = PCounter()
>>> p_A.value
0
>>> tm_A.commit()

Now get another copy of ‘p’ so we can make a conflict. Think of conn_A
(connection A) as one thread, and conn_B (connection B) as a concurrent
thread. p_A is a view on the object in the first connection, and p_B
is a view on the same persistent object in the second connection.

>>> tm_B = transaction.TransactionManager()
>>> conn_B = db.open(transaction_manager=tm_B)
>>> p_B = conn_B.root()['p']
>>> p_B.value
0
>>> p_A._p_oid == p_B._p_oid
True

Now we can make a conflict, and see it resolved.

>>> p_A.inc()
>>> p_A.value
1
>>> p_B.inc()
>>> p_B.value
1
>>> tm_B.commit()
>>> p_B.value
1
>>> tm_A.commit()
>>> p_A.value
2

We need to synchronize connection B, in any of a variety of ways, to see the
change from connection A.

>>> p_B.value
1
>>> trans = tm_B.begin()
>>> p_B.value
2

A very similar class found in real world use is BTrees.Length.Length.

This conflict resolution approach is simple, yet powerful. However, it
has a few caveats and rough edges in practice. The simplicity, then, is
a bit of a disguise. Again, be warned, writing conflict resolution code
means that you claim significant responsibilty for your data integrity.

Because of the rough edges, the current conflict resolution approach is slated
for change (as of this writing, according to Jim Fulton, the ZODB
primary author and maintainer). Others have talked about different approaches
as well (see, for instance, http://www.python.org/~jeremy/weblog/031031c.html).
But for now, the _p_resolveConflict method is what we have.

Caveats and Dangers

Here are caveats for working with this conflict resolution approach.
Each sub-section has a “DANGERS” section that outlines what might happen
if you ignore the warning. We work from the least danger to the most.

Conflict Resolution Is on the Server

If you are using ZEO or ZRS, be aware that the classes for which you have
conflict resolution code and the classes of the non-persistent objects
they reference must be available to import by the server (or ZRS
primary).

DANGERS: You think you are going to get conflict resolution, but you won’t.

Ignore self

Even though the _p_resolveConflict method has a “self”, ignore it.
Don’t change it. You make changes by returning the state. This is
effectively a class method.

DANGERS: The changes you make to the instance will be discarded. The
instance is not initialized, so other methods that depend on instance
attributes will not work.

Here’s an example of a broken _p_resolveConflict method:

class PCounter2(PCounter):
 def __init__(self):
 self.data = []
 def _p_resolveConflict(self, oldState, savedState, newState):
 self.data.append('bad idea')
 return super(PCounter2, self)._p_resolveConflict(
 oldState, savedState, newState)

Now we’ll prepare for the conflict again.

>>> p2_A = conn_A.root()['p2'] = PCounter2()
>>> p2_A.value
0
>>> tm_A.commit()
>>> trans = tm_B.begin() # sync
>>> p2_B = conn_B.root()['p2']
>>> p2_B.value
0
>>> p2_A._p_oid == p2_B._p_oid
True

And now we will make a conflict.

>>> p2_A.inc()
>>> p2_A.value
1
>>> p2_B.inc()
>>> p2_B.value
1
>>> tm_B.commit()
>>> p2_B.value
1
>>> tm_A.commit() # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ConflictError: database conflict error...

oops!

>>> tm_A.abort()
>>> p2_A.value
1
>>> trans = tm_B.begin()
>>> p2_B.value
1

Watch Out for Persistent Objects in the State

If the object state has a reference to Persistent objects (instances
of classes that inherit from persistent.Persistent) then these references
will not be loaded and are inaccessible. Instead, persistent objects
in the state dictionary are ZODB.ConflictResolution.PersistentReference
instances. These objects have the following interface:

class IPersistentReference(zope.interface.Interface):
 '''public contract for references to persistent objects from an object
 with conflicts.'''

 oid = zope.interface.Attribute(
 'The oid of the persistent object that this reference represents')

 database_name = zope.interface.Attribute(
 '''The name of the database of the reference, *if* different.

 If not different, None.''')

 klass = zope.interface.Attribute(
 '''class meta data. Presence is not reliable.''')

 weak = zope.interface.Attribute(
 '''bool: whether this reference is weak''')

 def __cmp__(other):
 '''if other is equivalent reference, return 0; else raise ValueError.

 Equivalent in this case means that oid and database_name are the same.

 If either is a weak reference, we only support `is` equivalence, and
 otherwise raise a ValueError even if the datbase_names and oids are
 the same, rather than guess at the correct semantics.

 It is impossible to sort reliably, since the actual persistent
 class may have its own comparison, and we have no idea what it is.
 We assert that it is reasonably safe to assume that an object is
 equivalent to itself, but that's as much as we can say.

 We don't compare on 'is other', despite the
 PersistentReferenceFactory.data cache, because it is possible to
 have two references to the same object that are spelled with different
 data (for instance, one with a class and one without).'''

So let’s look at one of these. Let’s assume we have three, old,
saved, and new, each representing a persistent reference to the same
object within a _p_resolveConflict call from the oldState, savedState,
and newState 1. They have an oid, weak is
False, and database_name is None. klass happens to be set but this is
not always the case.

>>> isinstance(new.oid, bytes)
True
>>> new.weak
False
>>> print(new.database_name)
None
>>> new.klass is PCounter
True

There are a few subtleties to highlight here. First, notice that the
database_name is only present if this is a cross-database reference
(see cross-database-references.txt in this directory, and examples
below). The database name and oid is sometimes a reasonable way to
reliably sort Persistent objects (see zope.app.keyreference, for
instance) but if your code compares one PersistentReference with a
database_name and another without, you need to refuse to give an answer
and raise an exception, because you can’t know how the unknown
database_name sorts.

We already saw a persistent reference with a database_name of None. Now
let’s suppose new is an example of a cross-database reference from a
database named ‘2’ 2.

>>> new.database_name
'2'

As seen, the database_name is available for this cross-database reference,
and not for others. References to persistent objects, as defined in
seialize.py, have other variations, such as weak references, which are
handled but not discussed here 3

Second, notice the __cmp__ behavior 4. This is new behavior
after ZODB 3.8 and addresses a serious problem for when persistent
objects are compared in an _p_resolveConflict, such as that in the ZODB
BTrees code. Prior to this change, it was not safe to use Persistent
objects as keys in a BTree. You needed to define a __cmp__ for them to
be sorted reliably out of the context of conflict resolution, but then
during conflict resolution the sorting would be arbitrary, on the basis
of the persistent reference’s memory location. This could have lead to
inconsistent state for BTrees (or BTree module buckets or tree sets or sets).

Here’s an example of how the new behavior stops potentially incorrect
resolution.

>>> import BTrees
>>> treeset_A = conn_A.root()['treeset'] = BTrees.family32.OI.TreeSet()
>>> tm_A.commit()
>>> trans = tm_B.begin() # sync
>>> treeset_B = conn_B.root()['treeset']
>>> treeset_A.insert(PCounter())
1
>>> treeset_B.insert(PCounter())
1
>>> tm_B.commit()
>>> tm_A.commit() # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ConflictError: database conflict error...
>>> tm_A.abort()

Third, note that, even if the persistent object to which the reference refers
changes in the same transaction, the reference is still the same.

DANGERS: subtle and potentially serious. Beyond the two subtleties above,
which should now be addressed, there is a general problem for objects that
are composites of smaller persistent objects–for instance, a BTree, in
which the BTree and each bucket is a persistent object; or a
zc.queue.CompositePersistentQueue, which is a persistent queue of
persistent queues. Consider the following situation. It is actually solved,
but it is a concrete example of what might go wrong.

A BTree (persistent object) has a two buckets (persistent objects). The
second bucket has one persistent object in it. Concurrently, one thread
deletes the one object in the second bucket, which causes the BTree to dump
the bucket; and another thread puts an object in the second bucket. What
happens during conflict resolution? Remember, each persistent object cannot
see the other. From the perspective of the BTree object, it has no
conflicts: one transaction modified it, causing it to lose a bucket; and the
other transaction did not change it. From the perspective of the bucket,
one transaction deleted an object and the other added it: it will resolve
conflicts and say that the bucket has the new object and not the old one.
However, it will be garbage collected, and effectively the addition of the
new object will be lost.

As mentioned, this story is actually solved for BTrees. As
BTrees/MergeTemplate.c explains, whenever savedState or newState for a bucket
shows an empty bucket, the code refuses to resolve the conflict: this avoids
the situation above.

>>> bucket_A = conn_A.root()['bucket'] = BTrees.family32.II.Bucket()
>>> bucket_A[0] = 255
>>> tm_A.commit()
>>> trans = tm_B.begin() # sync
>>> bucket_B = conn_B.root()['bucket']
>>> bucket_B[1] = 254
>>> del bucket_A[0]
>>> tm_B.commit()
>>> tm_A.commit() # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ConflictError: database conflict error...
>>> tm_A.abort()

However, the story highlights the kinds of subtle problems that units
made up of multiple composite Persistent objects need to contemplate.
Any structure made up of objects that contain persistent objects with
conflict resolution code, as a catalog index is made up of multiple
BTree Buckets and Sets, each with conflict resolution, needs to think
through these kinds of problems or be faced with potential data
integrity issues.

	1

	We’ll catch persistent references with a class
mutable.

class PCounter3(PCounter):
 data = []
 def _p_resolveConflict(self, oldState, savedState, newState):
 PCounter3.data.append(
 (oldState.get('other'),
 savedState.get('other'),
 newState.get('other')))
 return super(PCounter3, self)._p_resolveConflict(
 oldState, savedState, newState)

>>> p3_A = conn_A.root()['p3'] = PCounter3()
>>> p3_A.other = conn_A.root()['p']
>>> tm_A.commit()
>>> trans = tm_B.begin() # sync
>>> p3_B = conn_B.root()['p3']
>>> p3_A.inc()
>>> p3_B.inc()
>>> tm_B.commit()
>>> tm_A.commit()
>>> old, saved, new = PCounter3.data[-1]

	2

	We need a whole different set of databases for this.
See cross-database-references.txt in this directory for a discussion of
what is going on here.

>>> databases = {}
>>> db1 = ZODB.DB('1', databases=databases, database_name='1')
>>> db2 = ZODB.DB('2', databases=databases, database_name='2')
>>> tm_multi_A = transaction.TransactionManager()
>>> conn_1A = db1.open(transaction_manager=tm_multi_A)
>>> conn_2A = conn_1A.get_connection('2')
>>> p4_1A = conn_1A.root()['p4'] = PCounter3()
>>> p5_2A = conn_2A.root()['p5'] = PCounter3()
>>> conn_2A.add(p5_2A)
>>> p4_1A.other = p5_2A
>>> tm_multi_A.commit()
>>> tm_multi_B = transaction.TransactionManager()
>>> conn_1B = db1.open(transaction_manager=tm_multi_B)
>>> p4_1B = conn_1B.root()['p4']
>>> p4_1A.inc()
>>> p4_1B.inc()
>>> tm_multi_B.commit()
>>> tm_multi_A.commit()
>>> old, saved, new = PCounter3.data[-1]

	3

	We’ll simply instantiate PersistentReferences
with examples of types described in ZODB/serialize.py.

>>> from ZODB.ConflictResolution import PersistentReference

>>> ref1 = PersistentReference(b'my_oid')
>>> ref1.oid
'my_oid'
>>> print(ref1.klass)
None
>>> print(ref1.database_name)
None
>>> ref1.weak
False

>>> ref2 = PersistentReference((b'my_oid', 'my_class'))
>>> ref2.oid
'my_oid'
>>> ref2.klass
'my_class'
>>> print(ref2.database_name)
None
>>> ref2.weak
False

>>> ref3 = PersistentReference(['w', (b'my_oid',)])
>>> ref3.oid
'my_oid'
>>> print(ref3.klass)
None
>>> print(ref3.database_name)
None
>>> ref3.weak
True

>>> ref3a = PersistentReference(['w', (b'my_oid', 'other_db')])
>>> ref3a.oid
'my_oid'
>>> print(ref3a.klass)
None
>>> ref3a.database_name
'other_db'
>>> ref3a.weak
True

>>> ref4 = PersistentReference(['m', ('other_db', b'my_oid', 'my_class')])
>>> ref4.oid
'my_oid'
>>> ref4.klass
'my_class'
>>> ref4.database_name
'other_db'
>>> ref4.weak
False

>>> ref5 = PersistentReference(['n', ('other_db', b'my_oid')])
>>> ref5.oid
'my_oid'
>>> print(ref5.klass)
None
>>> ref5.database_name
'other_db'
>>> ref5.weak
False

>>> ref6 = PersistentReference([b'my_oid']) # legacy
>>> ref6.oid
'my_oid'
>>> print(ref6.klass)
None
>>> print(ref6.database_name)
None
>>> ref6.weak
True

	4

	All references are equal to themselves.

>>> ref1 == ref1 and ref2 == ref2 and ref4 == ref4 and ref5 == ref5
True
>>> ref3 == ref3 and ref3a == ref3a and ref6 == ref6 # weak references
True

Non-weak references with the same oid and database_name are equal.

>>> ref1 == ref2 and ref4 == ref5
True

Everything else raises a ValueError: weak references with the same oid and
database, and references with a different database_name or oid.

>>> ref3 == ref6
Traceback (most recent call last):
...
ValueError: can't reliably compare against different PersistentReferences

>>> ref1 == PersistentReference(('another_oid', 'my_class'))
Traceback (most recent call last):
...
ValueError: can't reliably compare against different PersistentReferences

>>> ref4 == PersistentReference(
... ['m', ('another_db', 'my_oid', 'my_class')])
Traceback (most recent call last):
...
ValueError: can't reliably compare against different PersistentReferences

Collabortation Diagrams

Caution

This document hasn’t been reviewed since 2005
and is likely out of date.

This file contains several collaboration diagrams for the ZODB.

Simple fetch, modify, commit

Participants

	DB: ZODB.DB.DB

	C: ZODB.Connection.Connection

	S: ZODB.FileStorage.FileStorage

	T: transaction.interfaces.ITransaction

	TM: transaction.interfaces.ITransactionManager

	o1, o2, …: pre-existing persistent objects

Scenario

DB.open()
 create C
 TM.registerSynch(C)
TM.begin()
 create T
C.get(1) # fetches o1
C.get(2) # fetches o2
C.get(3) # fetches o3
o1.modify() # anything that modifies o1
 C.register(o1)
 T.join(C)
o2.modify()
 C.register(o2)
 # T.join(C) does not happen again
o1.modify()
 # C.register(o1) doesn't happen again, because o1 was already
 # in the changed state.
T.commit()
 C.beforeCompletion(T)
 C.tpc_begin(T)
 S.tpc_begin(T)
 C.commit(T)
 S.store(1, ..., T)
 S.store(2, ..., T)
 # o3 is not stored, because it wasn't modified
 C.tpc_vote(T)
 S.tpc_vote(T)
 C.tpc_finish(T)
 S.tpc_finish(T, f) # f is a callback function, which arranges
 # to call DB.invalidate (next)
 DB.invalidate(tid, {1: 1, 2: 1}, C)
 C2.invalidate(tid, {1: 1, 2: 1}) # for all connections
 # C2 to DB, where C2
 # is not C
 TM.free(T)
 C.afterCompletion(T)
 C._flush_invalidations()
 # Processes invalidations that may have come in from other
 # transactions.

Simple fetch, modify, abort

Participants

	DB: ZODB.DB.DB

	C: ZODB.Connection.Connection

	S: ZODB.FileStorage.FileStorage

	T: transaction.interfaces.ITransaction

	TM: transaction.interfaces.ITransactionManager

	o1, o2, …: pre-existing persistent objects

Scenario

DB.open()
 create C
 TM.registerSynch(C)
TM.begin()
 create T
C.get(1) # fetches o1
C.get(2) # fetches o2
C.get(3) # fetches o3
o1.modify() # anything that modifies o1
 C.register(o1)
 T.join(C)
o2.modify()
 C.register(o2)
 # T.join(C) does not happen again
o1.modify()
 # C.register(o1) doesn't happen again, because o1 was already
 # in the changed state.
T.abort()
 C.beforeCompletion(T)
 C.abort(T)
 C._cache.invalidate(1) # toss changes to o1
 C._cache.invalidate(2) # toss changes to o2
 # o3 wasn't modified, and its cache entry isn't invalidated.
 TM.free(T)
 C.afterCompletion(T)
 C._flush_invalidations()
 # Processes invalidations that may have come in from other
 # transactions.

Rollback of a savepoint

Participants

	T: transaction.interfaces.ITransaction

	o1, o2, o3: some persistent objects

	C1, C2, C3: resource managers

	S1, S2: Transaction savepoint objects

	s11, s21, s22: resource-manager savepoints

Scenario

create T
o1.modify()
 C1.regisiter(o1)
 T.join(C1)
T.savepoint()
 C1.savepoint()
 return s11
 return S1 = Savepoint(T, [r11])
o1.modify()
 C1.regisiter(o1)
o2.modify()
 C2.regisiter(o2)
 T.join(C2)
T.savepoint()
 C1.savepoint()
 return s21
 C2.savepoint()
 return s22
 return S2 = Savepoint(T, [r21, r22])
o3.modify()
 C3.regisiter(o3)
 T.join(C3)
S1.rollback()
 S2.rollback()
 T.discard()
 C1.discard()
 C2.discard()
 C3.discard()
 o3.invalidate()
 S2.discard()
 s21.discard() # roll back changes since previous, which is r11
 C1.discard(s21)
 o1.invalidate()
 # truncates temporary storage to s21's position
 s22.discard() # roll back changes since previous, which is r11
 C1.discard(s22)
 o2.invalidate()
 # truncates temporary storage to beginning, because
 # s22 was the first savepoint. (Perhaps conection
 # savepoints record the log position before the
 # data were written, which is 0 in this case.
T.commit()
 C1.beforeCompletion(T)
 C2.beforeCompletion(T)
 C3.beforeCompletion(T)
 C1.tpc_begin(T)
 S1.tpc_begin(T)
 C2.tpc_begin(T)
 C3.tpc_begin(T)
 C1.commit(T)
 S1.store(1, ..., T)
 C2.commit(T)
 C3.commit(T)
 C1.tpc_vote(T)
 S1.tpc_vote(T)
 C2.tpc_vote(T)
 C3.tpc_vote(T)
 C1.tpc_finish(T)
 S1.tpc_finish(T, f) # f is a callback function, which arranges
 c# to call DB.invalidate (next)
 DB.invalidate(tid, {1: 1}, C)
 TM.free(T)
 C1.afterCompletion(T)
 C1._flush_invalidations()
 C2.afterCompletion(T)
 C2._flush_invalidations()
 C3.afterCompletion(T)
 C3._flush_invalidations()

Cross-Database References

Persistent references to objects in different databases within a
multi-database are allowed.

Lets set up a multi-database with 2 databases:

>>> import ZODB.tests.util, transaction, persistent
>>> databases = {}
>>> db1 = ZODB.tests.util.DB(databases=databases, database_name='1')
>>> db2 = ZODB.tests.util.DB(databases=databases, database_name='2')

And create a persistent object in the first database:

>>> tm = transaction.TransactionManager()
>>> conn1 = db1.open(transaction_manager=tm)
>>> p1 = MyClass()
>>> conn1.root()['p'] = p1
>>> tm.commit()

First, we get a connection to the second database. We get the second
connection using the first connection’s get_connection method. This
is important. When using multiple databases, we need to make sure we
use a consistent set of connections so that the objects in the
connection caches are connected in a consistent manner.

>>> conn2 = conn1.get_connection('2')

Now, we’ll create a second persistent object in the second database.
We’ll have a reference to the first object:

>>> p2 = MyClass()
>>> conn2.root()['p'] = p2
>>> p2.p1 = p1
>>> tm.commit()

Now, let’s open a separate connection to database 2. We use it to
read p2, use p2 to get to p1, and verify that it is in database 1:

>>> conn = db2.open()
>>> p2x = conn.root()['p']
>>> p1x = p2x.p1

>>> p2x is p2, p2x._p_oid == p2._p_oid, p2x._p_jar.db() is db2
(False, True, True)

>>> p1x is p1, p1x._p_oid == p1._p_oid, p1x._p_jar.db() is db1
(False, True, True)

It isn’t valid to create references outside a multi database:

>>> db3 = ZODB.tests.util.DB()
>>> conn3 = db3.open(transaction_manager=tm)
>>> p3 = MyClass()
>>> conn3.root()['p'] = p3
>>> tm.commit()

>>> p2.p3 = p3
>>> tm.commit() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
InvalidObjectReference:
 ('Attempt to store an object from a foreign database connection',
 <Connection at ...>,
 <ZODB.tests.testcrossdatabasereferences.MyClass...>)

>>> tm.abort()

Databases for new objects

Objects are normally added to a database by making them reachable from
an object already in the database. This is unambiguous when there is
only one database. With multiple databases, it is not so clear what
happens. Consider:

>>> p4 = MyClass()
>>> p1.p4 = p4
>>> p2.p4 = p4

In this example, the new object is reachable from both p1 in database
1 and p2 in database 2. If we commit, which database should p4 end up
in? This sort of ambiguity could lead to subtle bugs. For that reason,
an error is generated if we commit changes when new objects are
reachable from multiple databases:

>>> tm.commit() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
InvalidObjectReference:
("A new object is reachable from multiple databases. Won't try to
guess which one was correct!",
<Connection at ...>,
<ZODB.tests.testcrossdatabasereferences.MyClass...>)

>>> tm.abort()

To resolve this ambiguity, we can commit before an object becomes
reachable from multiple databases.

>>> p4 = MyClass()
>>> p1.p4 = p4
>>> tm.commit()
>>> p2.p4 = p4
>>> tm.commit()
>>> p4._p_jar.db().database_name
'1'

This doesn’t work with a savepoint:

>>> p5 = MyClass()
>>> p1.p5 = p5
>>> s = tm.savepoint()
>>> p2.p5 = p5
>>> tm.commit() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
InvalidObjectReference:
("A new object is reachable from multiple databases. Won't try to guess
which one was correct!",
<Connection at ...>,
<ZODB.tests.testcrossdatabasereferences.MyClass...>)

>>> tm.abort()

(Maybe it should.)

We can disambiguate this situation by using the connection add method
to explicitly say what database an object belongs to:

>>> p5 = MyClass()
>>> p1.p5 = p5
>>> p2.p5 = p5
>>> conn1.add(p5)
>>> tm.commit()
>>> p5._p_jar.db().database_name
'1'

This the most explicit and thus the best way, when practical, to avoid
the ambiguity.

Dissallowing implicit cross-database references

The database contructor accepts a xrefs keyword argument that defaults
to True. If False is passed, the implicit cross database references
are disallowed. (Note that currently, implicit cross references are
the only kind of cross references allowed.)

>>> databases = {}
>>> db1 = ZODB.tests.util.DB(databases=databases, database_name='1')
>>> db2 = ZODB.tests.util.DB(databases=databases, database_name='2',
... xrefs=False)

In this example, we allow cross-references from db1 to db2, but not
the other way around.

>>> c1 = db1.open()
>>> c2 = c1.get_connection('2')
>>> c1.root.x = c2.root()
>>> transaction.commit()
>>> c2.root.x = c1.root()
>>> transaction.commit() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
InvalidObjectReference:
("Database '2' doesn't allow implicit cross-database references",
<Connection at ...>,
{'x': {}})

>>> transaction.abort()

NOTE

This implementation is incomplete. It allows creating and using
cross-database references, however, there are a number of facilities
missing:

cross-database garbage collection

Garbage collection is done on a database by database basis.
If an object on a database only has references to it from other
databases, then the object will be garbage collected when its
database is packed. The cross-database references to it will be
broken.

cross-database undo

Undo is only applied to a single database. Fixing this for
multiple databases is going to be extremely difficult. Undo
currently poses consistency problems, so it is not (or should not
be) widely used.

Cross-database aware (tolerant) export/import

The export/import facility needs to be aware, at least, of cross-database
references.

Event support

Sometimes, you want to react when ZODB does certain things. In the
past, ZODB provided ad hoc hook functions for this. Going forward,
ZODB will use an event mechanism. ZODB.event.notify is called with
events of interest.

If zope.event is installed, then ZODB.event.notify is simply an alias
for zope.event. If zope.event isn’t installed, then ZODB.event is a
noop.

Historical Connections

Usage

A database can be opened with a read-only, historical connection when given
a specific transaction or datetime. This can enable full-context application
level conflict resolution, historical exploration and preparation for reverts,
or even the use of a historical database revision as “production” while
development continues on a “development” head.

A database can be opened historically at or before a given transaction
serial or datetime. Here’s a simple example. It should work with any storage
that supports loadBefore.

We’ll begin our example with a fairly standard set up. We

	make a storage and a database;

	open a normal connection;

	modify the database through the connection;

	commit a transaction, remembering the time in UTC;

	modify the database again; and

	commit a transaction.

>>> import ZODB.MappingStorage
>>> db = ZODB.MappingStorage.DB()
>>> conn = db.open()

>>> import persistent.mapping

>>> conn.root()['first'] = persistent.mapping.PersistentMapping(count=0)

>>> import transaction
>>> transaction.commit()

We wait for some time to pass, record he time, and then make some other changes.

>>> import time
>>> time.sleep(.01)

>>> import datetime
>>> now = utcnow()
>>> time.sleep(.01)

>>> root = conn.root()
>>> root['second'] = persistent.mapping.PersistentMapping()
>>> root['first']['count'] += 1

>>> transaction.commit()

Now we will show a historical connection. We’ll open one using the now
value we generated above, and then demonstrate that the state of the original
connection, at the mutable head of the database, is different than the
historical state.

>>> transaction1 = transaction.TransactionManager()

>>> historical_conn = db.open(transaction_manager=transaction1, at=now)

>>> sorted(conn.root().keys())
['first', 'second']
>>> conn.root()['first']['count']
1

>>> sorted(historical_conn.root().keys())
['first']
>>> historical_conn.root()['first']['count']
0

Moreover, the historical connection cannot commit changes.

>>> historical_conn.root()['first']['count'] += 1
>>> historical_conn.root()['first']['count']
1
>>> transaction1.commit()
Traceback (most recent call last):
...
ReadOnlyHistoryError
>>> transaction1.abort()
>>> historical_conn.root()['first']['count']
0

(It is because of the mutable behavior outside of transactional semantics that
we must have a separate connection, and associated object cache, per thread,
even though the semantics should be readonly.)

As demonstrated, a timezone-naive datetime will be interpreted as UTC. You
can also pass a timezone-aware datetime or a serial (transaction id).
Here’s opening with a serial–the serial of the root at the time of the first
commit.

>>> historical_serial = historical_conn.root()._p_serial
>>> historical_conn.close()

>>> historical_conn = db.open(transaction_manager=transaction1,
... at=historical_serial)
>>> sorted(historical_conn.root().keys())
['first']
>>> historical_conn.root()['first']['count']
0
>>> historical_conn.close()

We’ve shown the at argument. You can also ask to look before a datetime
or serial. (It’s an error to pass both 1) In this example, we’re
looking at the database immediately prior to the most recent change to the
root.

>>> serial = conn.root()._p_serial
>>> historical_conn = db.open(
... transaction_manager=transaction1, before=serial)
>>> sorted(historical_conn.root().keys())
['first']
>>> historical_conn.root()['first']['count']
0

In fact, at arguments are translated into before values because the
underlying mechanism is a storage’s loadBefore method. When you look at a
connection’s before attribute, it is normalized into a before serial,
no matter what you pass into db.open.

>>> print(conn.before)
None
>>> historical_conn.before == serial
True

>>> conn.close()

Configuration

Like normal connections, the database lets you set how many total historical
connections can be active without generating a warning, and
how many objects should be kept in each historical connection’s object cache.

>>> db.getHistoricalPoolSize()
3
>>> db.setHistoricalPoolSize(4)
>>> db.getHistoricalPoolSize()
4

>>> db.getHistoricalCacheSize()
1000
>>> db.setHistoricalCacheSize(2000)
>>> db.getHistoricalCacheSize()
2000

In addition, you can specify the minimum number of seconds that an unused
historical connection should be kept.

>>> db.getHistoricalTimeout()
300
>>> db.setHistoricalTimeout(400)
>>> db.getHistoricalTimeout()
400

All three of these values can be specified in a ZConfig file.

>>> import ZODB.config
>>> db2 = ZODB.config.databaseFromString('''
... <zodb>
... <mappingstorage/>
... historical-pool-size 3
... historical-cache-size 1500
... historical-timeout 6m
... </zodb>
... ''')
>>> db2.getHistoricalPoolSize()
3
>>> db2.getHistoricalCacheSize()
1500
>>> db2.getHistoricalTimeout()
360

The pool lets us reuse connections. To see this, we’ll open some
connections, close them, and then open them again:

>>> conns1 = [db2.open(before=serial) for i in range(4)]
>>> _ = [c.close() for c in conns1]
>>> conns2 = [db2.open(before=serial) for i in range(4)]

Now let’s look at what we got. The first connection in conns 2 is the
last connection in conns1, because it was the last connection closed.

>>> conns2[0] is conns1[-1]
True

Also for the next two:

>>> (conns2[1] is conns1[-2]), (conns2[2] is conns1[-3])
(True, True)

But not for the last:

>>> conns2[3] is conns1[-4]
False

Because the pool size was set to 3.

Connections are also discarded if they haven’t been used in a while.
To see this, let’s close two of the connections:

>>> conns2[0].close(); conns2[1].close()

We’l also set the historical timeout to be very low:

>>> db2.setHistoricalTimeout(.01)
>>> time.sleep(.1)
>>> conns2[2].close(); conns2[3].close()

Now, when we open 4 connections:

>>> conns1 = [db2.open(before=serial) for i in range(4)]

We’ll see that only the last 2 connections from conn2 are in the
result:

>>> [c in conns1 for c in conns2]
[False, False, True, True]

If you change the historical cache size, that changes the size of the
persistent cache on our connection.

>>> historical_conn._cache.cache_size
2000
>>> db.setHistoricalCacheSize(1500)
>>> historical_conn._cache.cache_size
1500

Invalidations

Invalidations are ignored for historical connections. This is another white box
test.

>>> historical_conn = db.open(
... transaction_manager=transaction1, at=serial)
>>> conn = db.open()
>>> sorted(conn.root().keys())
['first', 'second']
>>> conn.root()['first']['count']
1
>>> sorted(historical_conn.root().keys())
['first', 'second']
>>> historical_conn.root()['first']['count']
1
>>> conn.root()['first']['count'] += 1
>>> conn.root()['third'] = persistent.mapping.PersistentMapping()
>>> transaction.commit()
>>> historical_conn.close()

Note that if you try to open an historical connection to a time in the future,
you will get an error.

>>> historical_conn = db.open(
... at=utcnow()+datetime.timedelta(1))
Traceback (most recent call last):
...
ValueError: cannot open an historical connection in the future.

Warnings

First, if you use datetimes to get a historical connection, be aware that the
conversion from datetime to transaction id has some pitfalls. Generally, the
transaction ids in the database are only as time-accurate as the system clock
was when the transaction id was created. Moreover, leap seconds are handled
somewhat naively in the ZODB (largely because they are handled naively in Unix/
POSIX time) so any minute that contains a leap second may contain serials that
are a bit off. This is not generally a problem for the ZODB, because serials
are guaranteed to increase, but it does highlight the fact that serials are not
guaranteed to be accurately connected to time. Generally, they are about as
reliable as time.time.

Second, historical connections currently introduce potentially wide variance in
memory requirements for the applications. Since you can open up many
connections to different serials, and each gets their own pool, you may collect
quite a few connections. For now, at least, if you use this feature you need to
be particularly careful of your memory usage. Get rid of pools when you know
you can, and reuse the exact same values for at or before when
possible. If historical connections are used for conflict resolution, these
connections will probably be temporary–not saved in a pool–so that the extra
memory usage would also be brief and unlikely to overlap.

	1

	It is an error to try and pass both at and before.

>>> historical_conn = db.open(
... transaction_manager=transaction1, at=now, before=historical_serial)
Traceback (most recent call last):
...
ValueError: can only pass zero or one of `at` and `before`

Persistent Classes

	NOTE: persistent classes are EXPERIMENTAL and, in some sense,

	incomplete. This module exists largely to test changes made to
support Zope 2 ZClasses, with their historical flaws.

The persistentclass module provides a meta class that can be used to implement
persistent classes.

Persistent classes have the following properties:

	They cannot be turned into ghosts

	They can only contain picklable subobjects

	They don’t live in regular file-system modules

Let’s look at an example:

>>> def __init__(self, name):
... self.name = name

>>> def foo(self):
... return self.name, self.kind

>>> import ZODB.persistentclass
>>> C = ZODB.persistentclass.PersistentMetaClass(
... 'C', (object,), dict(
... __init__ = __init__,
... __module__ = '__zodb__',
... foo = foo,
... kind = 'sample',
...))

This example is obviously a bit contrived. In particular, we defined
the methods outside of the class. Why? Because all of the items in a
persistent class must be picklable. We defined the methods as global
functions to make them picklable.

Also note that we explicitly set the module. Persistent classes don’t
live in normal Python modules. Rather, they live in the database. We
use information in __module__ to record where in the database. When
we want to use a database, we will need to supply a custom class
factory to load instances of the class.

The class we created works a lot like other persistent objects. It
has standard standard persistent attributes:

>>> C._p_oid
>>> C._p_jar
>>> C._p_serial
>>> C._p_changed
False

Because we haven’t saved the object, the jar, oid, and serial are all
None and it’s not changed.

We can create and use instances of the class:

>>> c = C('first')
>>> c.foo()
('first', 'sample')

We can modify the class and none of the persistent attributes will
change because the object hasn’t been saved.

>>> import six
>>> def bar(self):
... six.print_('bar', self.name)
>>> C.bar = bar
>>> c.bar()
bar first

>>> C._p_oid
>>> C._p_jar
>>> C._p_serial
>>> C._p_changed
False

Now, we can store the class in a database. We’re going to use an
explicit transaction manager so that we can show parallel transactions
without having to use threads.

>>> import transaction
>>> tm = transaction.TransactionManager()
>>> connection = some_database.open(transaction_manager=tm)
>>> connection.root()['C'] = C
>>> tm.commit()

Now, if we look at the persistence variables, we’ll see that they have
values:

>>> C._p_oid
'\x00\x00\x00\x00\x00\x00\x00\x01'
>>> C._p_jar is not None
True
>>> C._p_serial is not None
True
>>> C._p_changed
False

Now, if we modify the class:

>>> def baz(self):
... six.print_('baz', self.name)
>>> C.baz = baz
>>> c.baz()
baz first

We’ll see that the class has changed:

>>> C._p_changed
True

If we abort the transaction:

>>> tm.abort()

Then the class will return to it’s prior state:

>>> c.baz()
Traceback (most recent call last):
...
AttributeError: 'C' object has no attribute 'baz'

>>> c.bar()
bar first

We can open another connection and access the class there.

>>> tm2 = transaction.TransactionManager()
>>> connection2 = some_database.open(transaction_manager=tm2)

>>> C2 = connection2.root()['C']
>>> c2 = C2('other')
>>> c2.bar()
bar other

If we make changes without committing them:

>>> C.bar = baz
>>> c.bar()
baz first

>>> C is C2
False

Other connections are unaffected:

>>> connection2.sync()
>>> c2.bar()
bar other

Until we commit:

>>> tm.commit()
>>> connection2.sync()
>>> c2.bar()
baz other

Similarly, we don’t see changes made in other connections:

>>> C2.color = 'red'
>>> tm2.commit()

>>> c.color
Traceback (most recent call last):
...
AttributeError: 'C' object has no attribute 'color'

until we sync:

>>> connection.sync()
>>> c.color
'red'

Instances of Persistent Classes

We can, of course, store instances of persistent classes in the
database:

>>> c.color = 'blue'
>>> connection.root()['c'] = c
>>> tm.commit()

>>> connection2.sync()
>>> connection2.root()['c'].color
'blue'

	NOTE: If a non-persistent instance of a persistent class is copied,

	the class may be copied as well. This is usually not the desired
result.

Persistent instances of persistent classes

Persistent instances of persistent classes are handled differently
than normal instances. When we copy a persistent instances of a
persistent class, we want to avoid copying the class.

Lets create a persistent class that subclasses Persistent:

>>> import persistent
>>> class P(persistent.Persistent, C):
... __module__ = '__zodb__'
... color = 'green'

>>> connection.root()['P'] = P

>>> import persistent.mapping
>>> connection.root()['obs'] = persistent.mapping.PersistentMapping()
>>> p = P('p')
>>> connection.root()['obs']['p'] = p
>>> tm.commit()

You might be wondering why we didn’t just stick ‘p’ into the root
object. We created an intermediate persistent object instead. We are
storing persistent classes in the root object. To create a ghost for a
persistent instance of a persistent class, we need to be able to be
able to access the root object and it must be loaded first. If the
instance was in the root object, we’d be unable to create it while
loading the root object.

Now, if we try to load it, we get a broken object:

>>> connection2.sync()
>>> connection2.root()['obs']['p']
<persistent broken __zodb__.P instance '\x00\x00\x00\x00\x00\x00\x00\x04'>

because the module, __zodb__ can’t be loaded. We need to provide a
class factory that knows about this special module. Here we’ll supply a
sample class factory that looks up a class name in the database root
if the module is __zodb__. It falls back to the normal class lookup
for other modules:

>>> from ZODB.broken import find_global
>>> def classFactory(connection, modulename, globalname):
... if modulename == '__zodb__':
... return connection.root()[globalname]
... return find_global(modulename, globalname)

>>> some_database.classFactory = classFactory

Normally, the classFactory should be set before a database is opened.
We’ll reopen the connections we’re using. We’ll assign the old
connections to a variable first to prevent getting them from the
connection pool:

>>> old = connection, connection2
>>> connection = some_database.open(transaction_manager=tm)
>>> connection2 = some_database.open(transaction_manager=tm2)

Now, we can read the object:

>>> connection2.root()['obs']['p'].color
'green'
>>> connection2.root()['obs']['p'].color = 'blue'
>>> tm2.commit()

>>> connection.sync()
>>> p = connection.root()['obs']['p']
>>> p.color
'blue'

Copying

If we copy an instance via export/import, the copy and the original
share the same class:

>>> file = connection.exportFile(p._p_oid)
>>> _ = file.seek(0)
>>> cp = connection.importFile(file)
>>> file.close()
>>> cp.color
'blue'

>>> cp is not p
True

>>> cp.__class__ is p.__class__
True

>>> tm.abort()

XXX test abort of import

ZODB Utilities Module

The ZODB.utils module provides a number of helpful, somewhat random
:), utility functions.

>>> import ZODB.utils

This document documents a few of them. Over time, it may document
more.

64-bit integers and strings

ZODB uses 64-bit transaction ids that are typically represented as
strings, but are sometimes manipulated as integers. Object ids are
strings too and it is common to ise 64-bit strings that are just
packed integers.

Functions p64 and u64 pack and unpack integers as strings:

>>> ZODB.utils.p64(250347764455111456)
'\x03yi\xf7"\xa8\xfb '

>>> print(ZODB.utils.u64(b'\x03yi\xf7"\xa8\xfb '))
250347764455111456

The contant z64 has zero packed as a 64-bit string:

>>> ZODB.utils.z64
'\x00\x00\x00\x00\x00\x00\x00\x00'

Transaction id generation

Storages assign transaction ids as transactions are committed. These
are based on UTC time, but must be strictly increasing. The
newTid function akes this pretty easy.

To see this work (in a predictable way), we’ll first hack time.time:

>>> import time
>>> old_time = time.time
>>> time_value = 1224825068.12
>>> faux_time = lambda: time_value
>>> if isinstance(time,type):
... time.time = staticmethod(faux_time) # Jython
... else:
... time.time = faux_time

Now, if we ask for a new time stamp, we’ll get one based on our faux
time:

>>> tid = ZODB.utils.newTid(None)
>>> tid
'\x03yi\xf7"\xa54\x88'

newTid requires an old tid as an argument. The old tid may be None, if
we don’t have a previous transaction id.

This time is based on the current time, which we can see by converting
it to a time stamp.

>>> import ZODB.TimeStamp
>>> print(ZODB.TimeStamp.TimeStamp(tid))
2008-10-24 05:11:08.120000

To assure that we get a new tid that is later than the old, we can
pass an existing tid. Let’s pass the tid we just got.

>>> tid2 = ZODB.utils.newTid(tid)
>>> ZODB.utils.u64(tid), ZODB.utils.u64(tid2)
(250347764454864008, 250347764454864009)

Here, since we called it at the same time, we got a time stamp that
was only slightly larger than the previos one. Of course, at a later
time, the time stamp we get will be based on the time:

>>> time_value = 1224825069.12
>>> tid = ZODB.utils.newTid(tid2)
>>> print(ZODB.TimeStamp.TimeStamp(tid))
2008-10-24 05:11:09.120000

>>> time.time = old_time

Locking support

Storages are required to be thread safe. The locking descriptor helps
automate that. It arranges for a lock to be acquired when a function
is called and released when a function exits. To demonstrate this,
we’ll create a “lock” type that simply prints when it is called:

>>> class Lock:
... def acquire(self):
... print('acquire')
... def release(self):
... print('release')
... def __enter__(self):
... return self.acquire()
... def __exit__(self, *ignored):
... return self.release()

Now we’ll demonstrate the descriptor:

>>> class C:
... _lock = Lock()
... _lock_acquire = _lock.acquire
... _lock_release = _lock.release
...
... @ZODB.utils.locked
... def meth(self, *args, **kw):
... print('meth %r %r' %(args, kw))

The descriptor expects the instance it wraps to have a ‘_lock
attribute.

>>> C().meth(1, 2, a=3)
acquire
meth (1, 2) {'a': 3}
release

Preconditions

Often, we want to supply method preconditions. The locking descriptor
supports optional method preconditions 1.

>>> class C:
... def __init__(self):
... self._lock = Lock()
... self._opened = True
... self._transaction = None
...
... def opened(self):
... """The object is open
... """
... print('checking if open')
... return self._opened
...
... def not_in_transaction(self):
... """The object is not in a transaction
... """
... print('checking if in a transaction')
... return self._transaction is None
...
... @ZODB.utils.locked(opened, not_in_transaction)
... def meth(self, *args, **kw):
... print('meth %r %r' % (args, kw))

>>> c = C()
>>> c.meth(1, 2, a=3)
acquire
checking if open
checking if in a transaction
meth (1, 2) {'a': 3}
release

>>> c._transaction = 1
>>> c.meth(1, 2, a=3) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
AssertionError:
('Failed precondition: ', 'The object is not in a transaction')

>>> c._opened = False
>>> c.meth(1, 2, a=3) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
AssertionError: ('Failed precondition: ', 'The object is open')

	1

	Arguably, preconditions should be handled via separate
descriptors, but for ZODB storages, almost all methods need to be
locked. Combining preconditions with locking provides both
efficiency and concise expressions. A more general-purpose
facility would almost certainly provide separate descriptors for
preconditions.

Developers notes

Building

Bootstrap buildout, if necessary using bootstrap.py:

python bootstrap.py

Run the buildout:

bin/buildout

Testing

The ZODB checkouts are buildouts [http://www.python.org/pypi/zc.buildout].
When working from a ZODB checkout, first run the bootstrap.py script
to initialize the buildout:

% python bootstrap.py

and then use the buildout script to build ZODB and gather the dependencies:

% bin/buildout

This creates a test script:

% bin/test -v

This command will run all the tests, printing a single dot for each
test. When it finishes, it will print a test summary. The exact
number of tests can vary depending on platform and available
third-party libraries.:

Ran 1182 tests in 241.269s

OK

The test script has many more options. Use the -h or --help
options to see a file list of options. The default test suite omits
several tests that depend on third-party software or that take a long
time to run. To run all the available tests use the --all option.
Running all the tests takes much longer.:

Ran 1561 tests in 1461.557s

OK

Our primary development platforms are Linux and Mac OS X. The test
suite should pass without error on these platforms and, hopefully,
Windows, although it can take a long time on Windows – longer if you
use ZoneAlarm.

Generating docs

cd to the doc directory and:

make html

Contributing

Almost any code change should include tests.

Any change that changes features should include documentation updates.

Change History

5.6.0 (unreleased)

	Fix race with invalidations when starting a new transaction. The bug
affected Storage implementations that rely on mvccadapter, and could result
in data corruption (oid loaded at wrong serial after a concurrent commit).
See issue 290 [https://github.com/zopefoundation/ZODB/issues/290].

	Improve volatile attribute _v_ documentation.

	Make repozo’s recover mode atomic by recovering the backup in a
temporary file which is then moved to the expected output file.

	Add a new option to repozo in recover mode which allows to verify
backups integrity on the fly.

	Drop support for Python 3.4.

	Add support for Python 3.8.

	Fix DB.undo() and DB.undoMultiple() to close the storage
they open behind the scenes when the transaction is committed or
rolled back. See issue 268 [https://github.com/zopefoundation/ZODB/issues/268].

	Make TransactionMetaData in charge of (de)serializing extension data.
A new extension_bytes attribute converts automatically from
extension, or vice-versa. During storage iteration, extension_bytes
holds bytes as they are stored (i.e. no deserialization happens).
See issue 207 [https://github.com/zopefoundation/ZODB/pull/207].

	Make a connection’s savepoint storage implement its own
(approximate) getSize method instead of relying on the original
storage. Previously, this produced confusing DEBUG logging. See
issue 282 [https://github.com/zopefoundation/ZODB/issues/282].

	Fix tests with transaction 3.0.

5.5.1 (2018-10-25)

	Fix KeyError on releasing resources of a Connection when closing the DB.
This requires at least version 2.4 of the transaction package.
See issue 208 [https://github.com/zopefoundation/ZODB/issues/208].

5.5.0 (2018-10-13)

	Add support for Python 3.7.

	Bump the dependency on zodbpickle to at least 1.0.1. This is
required to avoid a memory leak on Python 2.7. See issue 203 [https://github.com/zopefoundation/ZODB/issues/203].

	Bump the dependency on persistent to at least 4.4.0.

	Make the internal support functions for dealing with OIDs (p64
and u64) somewhat faster and raise more informative
exceptions on certain types of bad input. See issue 216 [https://github.com/zopefoundation/ZODB/issues/216].

	Remove support for python setup.py test. It hadn’t been working
for some time. See issue #218 [https://github.com/zopefoundation/ZODB/issues/218].

	Make the tests run faster by avoiding calls to time.sleep().

5.4.0 (2018-03-26)

	ZODB now uses pickle protocol 3 for both Python 2 and Python 3.

(Previously, protocol 2 was used for Python 2.)

The zodbpickle package provides a zodbpickle.binary string type
that should be used in Python 2 to cause binary strings to be saved
in a pickle binary format, so they can be loaded correctly in
Python 3. Pickle protocol 3 is needed for this to work correctly.

	Object identifiers in persistent references are saved as
zodbpickle.binary strings in Python 2, so that they are loaded
correctly in Python 3.

	If an object is missing from the index while packing a FileStorage,
report its full oid.

	Storage imports are a bit faster.

	Storages can be important from non-seekable sources, like
file-wrapped pipes.

5.3.0 (2017-08-30)

	Add support for Python 3.6.

	Drop support for Python 3.3.

	Ensure that the HistoricalStorageAdapter forwards the release method to
its base instance. See issue 78 [https://github.com/zopefoundation/ZODB/issues/788].

	Use a higher pickle protocol (2) for serializing objects on Python
2; previously protocol 1 was used. This is much more efficient for
new-style classes (all persistent objects are new-style), at the
cost of being very slightly less efficient for old-style classes.

Note

On Python 2, this will now allow open file objects
(but not open blobs or sockets) to be pickled (loading
the object will result in a closed file); previously this
would result in a TypeError. Doing so is not
recommended as they cannot be loaded in Python 3.

See issue 179 [https://github.com/zopefoundation/ZODB/pull/179].

5.2.4 (2017-05-17)

	DB.close now explicitly frees internal resources. This is
helpful to avoid false positives in tests that check for leaks.

	Optimize getting the path to a blob file. See
issue 161 [https://github.com/zopefoundation/ZODB/pull/161].

	All classes are new-style classes on Python 2 (they were already
new-style on Python 3). This improves performance on PyPy. See
issue 160 [https://github.com/zopefoundation/ZODB/pull/160].

5.2.3 (2017-04-11)

	Fix an import error. See issue 158 [https://github.com/zopefoundation/ZODB/issues/158].

5.2.2 (2017-04-11)

	Fixed: A blob misfeature set blob permissions so that blobs and blob
directories were only readable by the database process owner, rather
than honoring user-controlled permissions (e.g. umask).
See issue 155 [https://github.com/zopefoundation/ZODB/issues/155].

5.2.1 (2017-04-08)

	Fixed: When opening FileStorages in read-only mode, non-existent
files were silently created. Creating a read-only file-storage
against a non-existent file errors.

5.2.0 (2017-02-09)

	Call new afterCompletion API on storages to allow them to free
resources after transaction complete.
See issue 147 [https://github.com/zodb/relstorage/issues/147].

	Take advantage of the new transaction-manager explicit mode to avoid
starting transactions unnecessarily when transactions end.

	Connection.new_oid delegates to its storage, not the DB. This is
helpful for improving concurrency in MVCC storages like RelStorage.
See issue 139 [https://github.com/zopefoundation/ZODB/issues/139].

	persistent is no longer required at setup time.
See issue 119 [https://github.com/zopefoundation/ZODB/issues/119].

	Connection.close and Connection.open no longer race on
self.transaction_manager, which could lead to
AttributeError. This was a bug introduced in 5.0.1. See issue
142 [https://github.com/zopefoundation/ZODB/pull/143].

5.1.1 (2016-11-18)

	Fixed: ZODB.Connection.TransactionMetaData didn’t support custom data
storage that some storages rely on.

5.1.0 (2016-11-17)

	ZODB now translates transaction meta data, user and
description from text to bytes before passing them to storages,
and converts them back to text when retrieving them from storages in
the history, undoLog and undoInfo methods.

The IDatabase interface was updated to reflect that history,
undoLog and undoInfo are available on database objects.
(They were always available, but not documented in the interface.)

5.0.1 (2016-11-17)

	Fix an AttributeError that DemoStorage could raise if it was asked
to store a blob into a temporary changes before reading a blob. See
issue 103 [https://github.com/zopefoundation/ZODB/issues/103].

	Call _p_resolveConflict() even if a conflicting change doesn’t change the
state. This reverts to the behaviour of 3.10.3 and older.

	Closing a Connection now reverts its transaction_manager to
None. This helps prevent errors and release resources when the
transaction_manager was the (default) thread-local manager. See
issue 114 [https://github.com/zopefoundation/ZODB/issues/114].

	Many docstrings have been improved.

5.0.0 (2016-09-06)

Major internal improvements and cleanups plus:

	Added a connection prefetch method that can be used to request
that a storage prefetch data an application will need:

conn.prefetch(obj, ...)

Where arguments can be objects, object ids, or iterables of objects
or object ids.

Added optional prefetch methods to the storage APIs. If a
storage doesn’t support prefetch, then the connection prefetch
method is a noop.

	fstail: print the txn offset and header size, instead of only the data offset.
fstail can now be used to truncate a DB at the right offset.

	Drop support for old commit protocol. All of the build-in storages
implement the new protocol. This new protocol allows storages to
provide better write performance by allowing multiple commits to
execute in parallel.

5.0.0b1 (2016-08-04)

	fstail: print the txn offset and header size, instead of only the data offset.
fstail can now be used to truncate a DB at the right offset.

Numerous internal cleanups, including:

	Changed the way the root object was created. Now the root object is
created using a database connection, rather than by making low-level
storage calls.

	Drop support for the old commit protocol.

	Internal FileStorage-undo fixes that should allow undo in some cases
where it didn’t work before.

	Drop the version argument to some methods where it was the last
argument and optional.

5.0.0a6 (2016-07-21)

	Added a connection prefetch method that can be used to request
that a storage prefect data an application will need:

conn.prefetch(obj, ...)

Where arguments can be objects, object ids, or iterables of objects
or object ids.

Added optional prefetch methods to the storage APIs. If a
storage doesn’t support prefetch, then the connection prefetch
method is a noop.

5.0.0a5 (2016-07-06)

Drop support for old commit protocol. All of the build-in storages
implement the new protocol. This new protocol allows storages to
provide better write performance by allowing multiple commits to
execute in parallel.

5.0.0a4 (2016-07-05)

See 4.4.2.

5.0.0a3 (2016-07-01)

See 4.4.1.

5.0.0a2 (2016-07-01)

See 4.4.0.

5.0.0a1 (2016-06-20)

Major internal implementation changes to the Multi Version
Concurrency Control (MVCC) implementation:

	For storages that implement IMVCCStorage (RelStorage), no longer
implement MVCC in ZODB.

	For other storages, MVCC is implemented using an additional storage
layer. This underlying layer works by calling loadBefore. The
low-level storage load method isn’t used any more.

This change allows server-based storages like ZEO and NEO to be
implemented more simply and cleanly.

4.4.3 (2016-08-04)

	Internal FileStorage-undo fixes that should allow undo in some cases
where it didn’t work before.

	fstail: print the txn offset and header size, instead of only the data offset.
fstail can now be used to truncate a DB at the right offset.

4.4.2 (2016-07-08)

Better support of the new commit protocol. This fixes issues with blobs and
undo. See pull requests #77, #80, #83

4.4.1 (2016-07-01)

Added IMultiCommitStorage to directly represent the changes in the 4.4.0
release and to make complient storages introspectable.

4.4.0 (2016-06-30)

This release begins evolution to a more effcient commit protocol that
allows storage implementations, like NEO [http://www.neoppod.org/],
to support multiple transactions committing at the same time, for
greater write parallelism.

This release updates IStorage:

	The committed transaction’s ID is returned by tpc_finish, rather
than being returned in response store and tpc_vote results.

	tpc_vote is now expected to return None or a list of object
ids for objects for which conflicts were resolved.

This release works with storages that implemented the older version of
the storage interface, but also supports storages that implement the
updated interface.

4.3.1 (2016-06-06)

	Fixed: FileStorage loadBefore didn’t handle deleted/undone data correctly.

4.3.0 (2016-05-31)

	Drop support for Python 2.6 and 3.2.

	Make the zodbpickle dependency required and not conditional.
This fixes various packaging issues involving pip and its wheel
cache. zodbpickle was only optional under Python 2.6 so this change
only impacts users of that version. See
https://github.com/zopefoundation/ZODB/pull/42.

	Add support for Python 3.5.

	Avoid failure during cleanup of nested databases that provide MVCC
on storage level (Relstorage).
https://github.com/zopefoundation/ZODB/issues/45

	Remove useless dependency to zdaemon in setup.py. Remove ZEO documentation.
Both were leftovers from the time where ZEO was part of this repository.

	Fix possible data corruption after FileStorage is truncated to roll back a
transaction.
https://github.com/zopefoundation/ZODB/pull/52

	DemoStorage: add support for conflict resolution and fix history()
https://github.com/zopefoundation/ZODB/pull/58

	Fixed a test that depended on implementation-specific behavior in tpc_finish

4.2.0 (2015-06-02)

	Declare conditional dependencies using PEP-426 environment markers
(fixing interation between pip 7’s wheel cache and tox). See
https://github.com/zopefoundation/ZODB/issues/36.

4.2.0b1 (2015-05-22)

	Log failed conflict resolution attempts at DEBUG level. See:
https://github.com/zopefoundation/ZODB/pull/29.

	Fix command-line parsing of --verbose and --verify arguments.
(The short versions, -v and -V, were parsed correctly.)

	Add support for PyPy.

	Fix the methods in ZODB.serialize that find object references
under Python 2.7 (used in scripts like referrers, netspace,
and fsrecover among others). This requires the addition of the
zodbpickle dependency.

	FileStorage: fix an edge case when disk space runs out while packing,
do not leave the .pack file around. That would block any write to the
to-be-packed Data.fs, because the disk would stay at 0 bytes free.
See https://github.com/zopefoundation/ZODB/pull/21.

4.1.0 (2015-01-11)

	Fix registration of custom logging level names (“BLATHER”, “TRACE”).

We have been registering them in the wrong order since 2004. Before
Python 3.4, the stdlib logging module masked the error by registering
them in both directions.

	Add support for Python 3.4.

4.0.1 (2014-07-13)

	Fix POSKeyError during transaction.commit when after
savepoint.rollback. See
https://github.com/zopefoundation/ZODB/issues/16

	Ensure that the pickler used in PyPy always has a persistent_id
attribute (inst_persistent_id is not present on the pure-Python
pickler). (PR #17)

	Provide better error reporting when trying to load an object on a
closed connection.

4.0.0 (2013-08-18)

Finally released.

4.0.0b3 (2013-06-11)

	Switch to using non-backward-compatible pickles (protocol 3, without
storing bytes as strings) under Python 3. Updated the magic number
for file-storage files under Python3 to indicate the incompatibility.

	Fixed: A UnicodeDecodeError could happen for non-ASCII OIDs
when using bushy blob layout.

4.0.0b2 (2013-05-14)

	Extended the filename renormalizer used for blob doctests to support
the filenames used by ZEO in non-shared mode.

	Added url parameter to setup() (PyPI says it is required).

4.0.0b1 (2013-05-10)

	Skipped non-unit tests in setup.py test. Use the buildout to run tests
requiring “layer” support.

	Included the filename in the exception message to support debugging in case
loadBlob does not find the file.

	Added support for Python 3.2 / 3.3.

Note

ZODB 4.0.x is supported on Python 3.x for new applications only.
Due to changes in the standard library’s pickle support, the Python3
support does not provide forward- or backward-compatibility
at the data level with Python2. A future version of ZODB may add
such support.

Applications which need migrate data from Python2 to Python3 should
plan to script this migration using separte databases, e.g. via a
“dump-and-reload” approach, or by providing explicit fix-ups of the
pickled values as transactions are copied between storages.

4.0.0a4 (2012-12-17)

	Enforced usage of bytes for _p_serial of persistent objects (fixes
compatibility with recent persistent releases).

4.0.0a3 (2012-12-01)

	
	Fixed: An elaborate test for trvial logic corrupted module state in a

	way that made other tests fail spuriously.

4.0.0a2 (2012-11-13)

Bugs Fixed

	An unneeded left-over setting in setup.py caused installation with
pip to fail.

4.0.0a1 (2012-11-07)

New Features

	The persistent and BTrees packages are now released as separate
distributions, on which ZODB now depends.

	ZODB no longer depends on zope.event. It now uses ZODB.event, which
uses zope.event if it is installed. You can override
ZODB.event.notify to provide your own event handling, although
zope.event is recommended.

	BTrees allowed object keys with insane comparison. (Comparison
inherited from object, which compares based on in-process address.)
Now BTrees raise TypeError if an attempt is made to save a key with
comparison inherited from object. (This doesn’t apply to old-style
class instances.)

Bugs Fixed

	Ensured that the export file and index file created by repozo share
the same timestamp.

https://bugs.launchpad.net/zodb/+bug/993350

	Pinned the transaction and manuel dependencies to Python 2.5-
compatible versions when installing under Python 2.5.

Note

Please see https://github.com/zopefoundation/ZODB/blob/master/HISTORY.rst
for older versions of ZODB.

Historical ZODB Changelog

Contents

	Change History

	5.6.0 (unreleased)

	5.5.1 (2018-10-25)

	5.5.0 (2018-10-13)

	5.4.0 (2018-03-26)

	5.3.0 (2017-08-30)

	5.2.4 (2017-05-17)

	5.2.3 (2017-04-11)

	5.2.2 (2017-04-11)

	5.2.1 (2017-04-08)

	5.2.0 (2017-02-09)

	5.1.1 (2016-11-18)

	5.1.0 (2016-11-17)

	5.0.1 (2016-11-17)

	5.0.0 (2016-09-06)

	5.0.0b1 (2016-08-04)

	5.0.0a6 (2016-07-21)

	5.0.0a5 (2016-07-06)

	5.0.0a4 (2016-07-05)

	5.0.0a3 (2016-07-01)

	5.0.0a2 (2016-07-01)

	5.0.0a1 (2016-06-20)

	4.4.3 (2016-08-04)

	4.4.2 (2016-07-08)

	4.4.1 (2016-07-01)

	4.4.0 (2016-06-30)

	4.3.1 (2016-06-06)

	4.3.0 (2016-05-31)

	4.2.0 (2015-06-02)

	4.2.0b1 (2015-05-22)

	4.1.0 (2015-01-11)

	4.0.1 (2014-07-13)

	4.0.0 (2013-08-18)

	4.0.0b3 (2013-06-11)

	4.0.0b2 (2013-05-14)

	4.0.0b1 (2013-05-10)

	4.0.0a4 (2012-12-17)

	4.0.0a3 (2012-12-01)

	4.0.0a2 (2012-11-13)

	Bugs Fixed

	4.0.0a1 (2012-11-07)

	New Features

	Bugs Fixed

	Historical ZODB Changelog

	3.10.5 (2011-11-19)

	Bugs Fixed

	3.10.4 (2011-11-17)

	Bugs Fixed

	3.10.3 (2011-04-12)

	Bugs Fixed

	Performance enhancements

	3.10.2 (2011-02-12)

	Bugs Fixed

	3.10.1 (2010-10-27)

	Bugs Fixed

	3.10.0 (2010-10-08)

	New Features

	Bugs fixed

	3.9.7 (2010-09-28)

	Bugs Fixed

	3.9.6 (2010-09-21)

	Bugs Fixed

	3.9.5 (2010-04-23)

	Bugs Fixed

	3.9.4 (2009-12-14)

	Bugs Fixed

	3.9.3 (2009-10-23)

	Bugs Fixed

	3.9.2 (2009-10-13)

	Bugs Fixed

	3.9.1 (2009-10-01)

	Bugs Fixed

	3.9.0 (2009-09-08)

	New Features (in more or less reverse chronological order)

	Bugs Fixed

	What’s new in ZODB 3.8.0

	General

	ZEO

	Transactions

	Blobs

	BTrees

	What’s new in ZODB3 3.7.0

	Packaging

	Connection management

	BTrees

	Documentation

	IPersistent

	Testing

	Tools

	BTrees

	Connection

	persistent

	After Commit hooks

	What’s new in ZODB3 3.6.2?

	DemoStorage

	Removal of Features Deprecated in ZODB 3.4

	Persistent

	Commit hooks

	Connection management

	ZEO

	BaseStorage

	Multidatabase

	PersistentMapping

	Tools

	BTrees

	ZopeUndo

	Connection

	Documentation

	Development

	transact

	What’s new in ZODB3 3.5.1?

	Build

	ZopeUndo

	What’s new in ZODB3 3.5.0?

	Savepoints

	ZEO client cache

	Subtransactions are deprecated

	Multi-database

	Tools

	Windows

	ThreadedAsync.LoopCallback

	FileStorage

	BTrees

	What’s new in ZODB3 3.4.1?

	Savepoints

	ZEO client cache

	Subtransactions

	FileStorage

	ThreadedAsync.LoopCallback

	Windows

	Tools

	DemoStorage

	BTrees

	What’s new in ZODB3 3.4?

	Connection, DB

	Development

	Error reporting

	Tests

	What’s new in ZODB3 3.4b1?

	transaction

	Support for ZODB4 savepoint-aware data managers has been dropped

	ZEO

	ZEO on Windows

	Tools

	FileStorage

	ZConfig

	DemoStorage

	BaseStorage

	Tests

	ZApplication

	What’s new in ZODB3 3.4a1?

	transaction

	DB

	ZEO compatibility

	BTrees

	FileStorage

	Tools

	fsIndex

	What’s new in ZODB3 3.3.1?

	Tests

	What’s new in ZODB3 3.3.1c1?

	BTrees

	ZEO

	ZEO protocol and compatibility

	FileStorage

	Pickle (in-memory Connection) Cache

	PersistentMapping and PersistentList

	BTrees

	Tools

	fsIndex

	What’s new in ZODB3 3.3.1a1?

	ZEO client cache

	ZEO

	persistent

	ConflictError

	FileStorage

	Install

	Tools

	What’s new in ZODB3 3.3?

	ZEO

	ZODB/component.xml

	transaction

	Connection

	FileStorage

	What’s new in ZODB3 3.3 release candidate 1?

	Connection

	transaction

	BTrees

	POSException

	ConflictError

	Tools

	What’s new in ZODB3 3.3 beta 2

	Transaction Managers

	Storages

	Tools

	Test suite

	What’s new in ZODB3 3.3 beta 1

	BTrees

	ZODB

	What’s new in ZODB3 3.3 alpha 3

	transaction

	persistent

	ZODB

	ZEO

	zdaemon

	zLOG

	ZConfig

	Miscellaneous

	What’s new in ZODB3 3.3 alpha 2

	Multi-version concurrency control

	ZEO

	Miscellaneous

	What’s new in ZODB3 3.3 alpha 1

	New features of Persistence

	New features in BTrees

	Other improvements

	What’s new in ZODB3 3.2

	What’s new in ZODB3 3.2 release candidate 1

	What’s new in ZODB3 3.2 beta 3

	What’s new in ZODB3 3.2 beta 2

	What’s new in ZODB3 3.2 beta 1

	ZODB

	ZConfig

	ZEO & zdaemon

	Storages

	BTrees

	Tools

	What’s new in ZODB3 3.2 alpha 1

	ZODB

	ZEO

	BTrees

	Installation

	Storages

	Misc

	What’s new in ZODB3 3.1.4?

	What’s new in ZODB3 3.1.3?

	What’s new in ZODB3 3.1.2 final?

	What’s new in ZODB3 3.1.2 beta 2?

	What’s new in ZODB3 3.1.2 beta 1?

	ZODB

	ZEO

	Storages

	BTrees

	Other

	Tools

	What’s new in ZODB3 3.1.1 final?

	Tools

	What’s new in ZODB3 3.1.1 beta 2?

	ZEO

	What’s new in ZODB3 3.1.1 beta 1?

	What’s new in ZODB3 3.1 final?

	What’s new in ZODB3 3.1 beta 3?

	What’s new in ZODB3 3.1 beta 2?

	What’s new in ZODB3 3.1 beta 1?

	New ZODB cache

	Storages

	Berkeley Storages

	BTrees

	ZEO

	Other features

	Documentation

	Other bugs fixed

	What’s new in StandaloneZODB 1.0 final?

	What’s new in StandaloneZODB 1.0 c1?

3.10.5 (2011-11-19)

Bugs Fixed

	Conflict resolution failed when state included cross-database
persistent references with classes that couldn’t be imported.

3.10.4 (2011-11-17)

Bugs Fixed

	Conflict resolution failed when state included persistent references
with classes that couldn’t be imported.

3.10.3 (2011-04-12)

Bugs Fixed

	“activity monitor not updated for subconnections when connection
returned to pool”

https://bugs.launchpad.net/zodb/+bug/737198

	“Blob temp file get’s removed before it should”,
https://bugs.launchpad.net/zodb/+bug/595378

A way this to happen is that a transaction is aborted after the
commit process has started. I don’t know how this would happen in
the wild.

In 3.10.3, the ZEO tpc_abort call to the server is changed to be
synchronous, which should address this case. Maybe there’s another
case.

Performance enhancements

	Improved ZEO client cache implementation to make it less likely to
evict objects that are being used.

	Small (possibly negligable) reduction in CPU in ZEO storage servers
to service object loads and in networking code.

3.10.2 (2011-02-12)

Bugs Fixed

	3.10 introduced an optimization to try to address BTree conflict
errors arrising for basing BTree keys on object ids. The
optimization caused object ids allocated in aborted transactions to
be reused. Unfortunately, this optimzation led to some rather
severe failures in some applications. The symptom is a conflict
error in which one of the serials mentioned is zero. This
optimization has been removed.

See (for example): https://bugs.launchpad.net/zodb/+bug/665452

	ZEO server transaction timeouts weren’t logged as critical.

https://bugs.launchpad.net/zodb/+bug/670986

3.10.1 (2010-10-27)

Bugs Fixed

	When a transaction rolled back a savepoint after adding objects and
subsequently added more objects and committed, an error could be
raised “ValueError: A different object already has the same oid”
causing the transaction to fail. Worse, this could leave a database
in a state where subsequent transactions in the same process would
fail.

https://bugs.launchpad.net/zodb/+bug/665452

	Unix domain sockets didn’t work for ZEO (since the addition of IPv6
support). https://bugs.launchpad.net/zodb/+bug/663259

	Removed a missfeature that can cause performance problems when using
an external garbage collector with ZEO. When objects were deleted
from a storage, invalidations were sent to clients. This makes no
sense. It’s wildly unlikely that the other connections/clients have
copies of the garbage. In normal storage garbage collection, we
don’t send invalidations. There’s no reason to send them when an
external garbage collector is used.

	ZEO client cache simulation misshandled invalidations
causing incorrect statistics and errors.

3.10.0 (2010-10-08)

New Features

	There are a number of performance enhancements for ZEO storage
servers.

	FileStorage indexes use a new format. They are saved and loaded much
faster and take less space. Old indexes can still be read, but new
indexes won’t be readable by older versions of ZODB.

	The API for undoing multiple transactions has changed. To undo
multiple transactions in a single transaction, pass a list of
transaction identifiers to a database’s undoMultiple method. Calling a
database’s undo method multiple times in the same transaction now
raises an exception.

	The ZEO protocol for undo has changed. The only user-visible
consequence of this is that when ZODB 3.10 ZEO servers won’t support
undo for older clients.

	The storage API (IStorage) has been tightened. Now, storages should
raise a StorageTransactionError when invalid transactions are passed
to tpc_begin, tpc_vote, or tpc_finish.

	ZEO clients (ClientStorage instances) now work in forked processes,
including those created via multiprocessing.Process instances.

	Broken objects now provide the IBroken interface.

	As a convenience, you can now pass an integer port as an address to
the ZEO ClientStorage constructor.

	As a convenience, there’s a new client function in the ZEO
package for constructing a ClientStorage instance. It takes the
same arguments as the ClientStorage constructor.

	DemoStorages now accept constructor athuments, close_base_on_close
and close_changes_on_close, to control whether underlying storages
are closed when the DemoStorage is closed.

https://bugs.launchpad.net/zodb/+bug/118512

	Removed the dependency on zope.proxy.

	Removed support for the _p_independent mini framework, which was
made moot by the introduction of multi-version concurrency control
several years ago.

	Added support for the transaction retry convenience
(transaction-manager attempts method) introduced in the
transaction 1.1.0 release.

	Enhanced the database opening conveniences:

	You can now pass storage keyword arguments to ZODB.DB and
ZODB.connection.

	You can now pass None (rather than a storage or file name) to get
a database with a mapping storage.

	Databases now warn when committing very large records (> 16MB).
This is to try to warn people of likely design mistakes. There is a
new option (large_record_size/large-record-size) to control the
record size at which the warning is issued.

	Added support for wrapper storages that transform pickle data.
Applications for this include compression and encryption. An
example wrapper storage implementation, ZODB.tests.hexstorage, was
included for testing.

It is important that storage implementations not assume that
storages contain pickles. Renamed IStorageDB to IStorageWrapper and
expanded it to provide methods for transforming and untransforming
data records. Storages implementations should use these methods to
get pickle data from stored records.

	Deprecated ZODB.interfaces.StorageStopIteration. Storage
iterator implementations should just raise StopIteration, which
means they can now be implemented as generators.

	The filestorage packer configuration option noe accepts values of
the form modname:expression, allowing the use of packer
factories with options.

	Added a new API that allows applications to make sure that current
data are read. For example, with:

self._p_jar.readCurrent(ob)

A conflict error will be raised if the version of ob read by the
transaction isn’t current when the transaction is committed.

Normally, ZODB only assures that objects read are consistent, but not
necessarily up to date. Checking whether an object is up to date is
important when information read from one object is used to update
another.

BTrees are an important case of reading one object to update
another. Internal nodes are read to decide which leave notes are
updated when a BTree is updated. BTrees now use this new API to
make sure that internal nodes are up to date on updates.

	When transactions are aborted, new object ids allocated during the
transaction are saved and used in subsequent transactions. This can
help in situations where object ids are used as BTree keys and the
sequential allocation of object ids leads to conflict errors.

	ZEO servers now support a server_status method for for getting
information on the number of clients, lock requests and general
statistics.

	ZEO clients now support a client_label constructor argument and
client-label configuration-file option to specify a label for a
client in server logs. This makes it easier to identify specific
clients corresponding to server log entries, especially when there
are multiple clients originating from the same machine.

	Improved ZEO server commit lock logging. Now, locking activity is
logged at the debug level until the number of waiting lock requests
gets above 3. Log at the critical level when the number of waiting
lock requests gets above 9.

	The file-storage backup script, repozo, will now create a backup
index file if an output file name is given via the –output/-o
option.

	Added a ‘–kill-old-on-full’ argument to the repozo backup options:
if passed, remove any older full or incremental backup files from the
repository after doing a full backup.
(https://bugs.launchpad.net/zope2/+bug/143158)

	The mkzeoinst script has been moved to a separate project:

https://pypi.org/project/zope.mkzeoinstance/

and is no-longer included with ZODB.

	Removed untested unsupported dbmstorage fossile.

	ZEO servers no longer log their pids in every log message. It’s just
not interesting. :)

Bugs fixed

	When a pool timeout was specified for a database and old connections
were removed due to timing out, an error occured due to a bug in the
connection cleanup logic.

	When multi-database connections were no longer used and cleaned up,
their subconnections weren’t cleaned up properly.

	ZEO didn’t work with IPv6 addrsses.
Added IPv6 support contributed by Martin v. Loewis.

	A file storage bug could cause ZEO clients to have incorrect
information about current object revisions after reconnecting to a
database server.

	Updated the ‘repozo –kill-old-on-full’ option to remove any ‘.index’
files corresponding to backups being removed.

	ZEO extension methods failed when a client reconnected to a
storage. (https://bugs.launchpad.net/zodb/+bug/143344)

	Clarified the return Value for lastTransaction in the case when
there aren’t any transactions. Now a string of 8 nulls (aka “z64”)
is specified.

	Setting _p_changed on a blob wo actually writing anything caused an
error. (https://bugs.launchpad.net/zodb/+bug/440234)

	The verbose mode of the fstest was broken.
(https://bugs.launchpad.net/zodb/+bug/475996)

	Object ids created in a savepoint that is rolled back wren’t being
reused. (https://bugs.launchpad.net/zodb/+bug/588389)

	Database connections didn’t invalidate cache entries when conflict
errors were raised in response to checkCurrentSerialInTransaction
errors. Normally, this shouldn’t be a problem, since there should be
pending invalidations for these oids which will cause the object to
be invalidated. There have been issues with ZEO persistent cache
management that have caused out of date data to remain in the cache.
(It’s possible that the last of these were addressed in the
3.10.0b5.) Invalidating read data when there is a conflict error
provides some extra insurance.

	The interface, ZODB.interfaces.IStorage was incorrect. The store
method should never return a sequence of oid and serial pairs.

	When a demo storage push method was used to create a new demo
storage and the new storage was closed, the original was
(incorrectly) closed.

	There were numerous bugs in the ZEO cache tracing and analysis code.
Cache simulation, while not perfect, seems to be much more accurate
now than it was before.

The ZEO cache trace statistics and simulation scripts have been
given more descriptive names and moved to the ZEO scripts package.

	BTree sets and tree sets didn’t correctly check values passed to
update or to constructors, causing Python to exit under certain
circumstances.

	Fixed bug in copying a BTrees.Length instance.
(https://bugs.launchpad.net/zodb/+bug/516653)

	Fixed a serious bug that caused cache failures when run
with Python optimization turned on.

https://bugs.launchpad.net/zodb/+bug/544305

	When using using a ClientStorage in a Storage server, there was a
threading bug that caused clients to get disconnected.

	On Mac OS X, clients that connected and disconnected quickly could
cause a ZEO server to stop accepting connections, due to a failure
to catch errors in the initial part of the connection process.

The failure to properly handle exceptions while accepting
connections is potentially problematic on other platforms.

Fixes: https://bugs.launchpad.net/zodb/+bug/135108

	Object state management wasn’t done correctly when classes
implemented custom _p_deavtivate methods.
(https://bugs.launchpad.net/zodb/+bug/185066)

3.9.7 (2010-09-28)

Bugs Fixed

	Changes in way that garbage collection treats dictionaries in Python
2.7 broke the object/connection cache implementation.
(https://bugs.launchpad.net/zodb/+bug/641481)

Python 2.7 wasn’t officially supported, but we were releasing
binaries for it, so …

	Logrotation/repoening via a SIGUSR2 signal wasn’t implemented.
(https://bugs.launchpad.net/zodb/+bug/143600)

	When using multi-databases, cache-management operations on a
connection, cacheMinimize and cacheGC, weren’t applied to
subconnections.

3.9.6 (2010-09-21)

Bugs Fixed

	Updating blobs in save points could cause spurious “invalidations
out of order” errors. https://bugs.launchpad.net/zodb/+bug/509801

(Thanks to Christian Zagrodnick for chasing this down.)

	If a ZEO client process was restarted while invalidating a ZEO cache
entry, the cache could be left in a stage when there is data marked
current that should be invalidated, leading to persistent conflict
errors.

	Corrupted or invalid cache files prevented ZEO clients from
starting. Now, bad cache files are moved aside.

	Invalidations of object records in ZEO caches, where the
invalidation transaction ids matched the cached transaction ids
should have been ignored.

	Shutting down a process while committing a transaction or processing
invalidations from the server could cause ZEO persistent client
caches to have invalid data. This, in turn caused stale data to
remain in the cache until it was updated.

	Conflict errors didn’t invalidate ZEO cache entries.

	When objects were added in savepoints and either the savepoint was
rolled back (https://bugs.launchpad.net/zodb/+bug/143560) or the
transaction was aborted
(https://mail.zope.org/pipermail/zodb-dev/2010-June/013488.html)
The objects’ _p_oid and _p_jar variables weren’t cleared, leading to
surprizing errors.

	Objects added in transactions that were later aborted could have
_p_changed still set (https://bugs.launchpad.net/zodb/+bug/615758).

	ZEO extension methods failed when a client reconnected to a
storage. (https://bugs.launchpad.net/zodb/+bug/143344)

	On Mac OS X, clients that connected and disconnected quickly could
cause a ZEO server to stop accepting connections, due to a failure
to catch errors in the initial part of the connection process.

The failure to properly handle exceptions while accepting
connections is potentially problematic on other platforms.

Fixes: https://bugs.launchpad.net/zodb/+bug/135108

	Passing keys or values outside the range of 32-bit ints on 64-bit
platforms led to undetected overflow errors. Now these cases cause
Type errors to be raised.

https://bugs.launchpad.net/zodb/+bug/143237

	BTree sets and tree sets didn’t correctly check values passed to
update or to constructors, causing Python to exit under certain
circumstances.

	The verbose mode of the fstest was broken.
(https://bugs.launchpad.net/zodb/+bug/475996)

3.9.5 (2010-04-23)

Bugs Fixed

	Fixed bug in cPickleCache’s byte size estimation logic.
(https://bugs.launchpad.net/zodb/+bug/533015)

	Fixed a serious bug that caused cache failures when run
with Python optimization turned on.

https://bugs.launchpad.net/zodb/+bug/544305

	Fixed a bug that caused savepoint rollback to not properly
set object state when objects implemented _p_invalidate methods
that reloaded ther state (unghostifiable objects).

https://bugs.launchpad.net/zodb/+bug/428039

	cross-database wekrefs weren’t handled correctly.

https://bugs.launchpad.net/zodb/+bug/435547

	The mkzeoinst script was fixed to tell people to
install and use the mkzeoinstance script. :)

3.9.4 (2009-12-14)

Bugs Fixed

	A ZEO threading bug could cause transactions to read inconsistent
data. (This sometimes caused an AssertionError in
Connection._setstate_noncurrent.)

	DemoStorage.loadBefore sometimes returned invalid data which
would trigger AssertionErrors in ZODB.Connection.

	History support was broken when using stprages that work with ZODB
3.8 and 3.9.

	zope.testing was an unnecessary non-testing dependency.

	Internal ZEO errors were logged at the INFO level, rather
than at the error level.

	The FileStorage backup and restore script, repozo, gave a
deprecation warning under Python 2.6.

	C Header files weren’t installed correctly.

	The undo implementation was incorrect in ways that could cause
subtle missbehaviors.

3.9.3 (2009-10-23)

Bugs Fixed

	2 BTree bugs, introduced by a bug fix in 3.9.0c2, sometimes caused
deletion of keys to be improperly handled, resulting in data being
available via iteraation but not item access.

3.9.2 (2009-10-13)

Bugs Fixed

	ZEO manages a separate thread for client network IO. It created
this thread on import, which caused problems for applications that
implemented daemon behavior by forking. Now, the client thread
isn’t created until needed.

	File-storage pack clean-up tasks that can take a long time
unnecessarily blocked other activity.

	In certain rare situations, ZEO client connections would hang during
the initial connection setup.

3.9.1 (2009-10-01)

Bugs Fixed

	Conflict errors committing blobs caused ZEO servers to stop committing
transactions.

3.9.0 (2009-09-08)

New Features (in more or less reverse chronological order)

	The Database class now has an xrefs keyword argument and a
corresponding allow-implicit-cross-references configuration option.
which default to true. When set to false, cross-database references
are disallowed.

	Added support for RelStorage.

	As a convenience, the connection root method for returning the root
object can now also be used as an object with attributes mapped to
the root-object keys.

	Databases have a new method, transaction, that can be used with the
Python (2.5 and later) with statement:

db = ZODB.DB(...)
with db.transaction() as conn:
 # ... do stuff with conn

This uses a private transaction manager for the connection.
If control exits the block without an error, the transaction is
committed, otherwise, it is aborted.

	Convenience functions ZODB.connection and ZEO.connection provide a
convenient way to open a connection to a database. They open a
database and return a connection to it. When the connection is
closed, the database is closed as well.

	The ZODB.config databaseFrom… methods now support
multi-databases. If multiple zodb sections are used to define
multiple databases, the databases are connected in a multi-database
arrangement and the first of the defined databases is returned.

	The zeopack script has gotten a number of improvements:

	Simplified command-line interface. (The old interface is still
supported, except that support for ZEO version 1 servers has been
dropped.)

	Multiple storages can be packed in sequence.

	This simplifies pack scheduling on servers serving multiple
databases.

	All storages are packed to the same time.

	You can now specify a time of day to pack to.

	The script will now time out if it can’t connect to s storage in
60 seconds.

	The connection now estimates the object size based on its pickle size
and informs the cache about size changes.

The database got additional configurations options (cache-size-bytes
and historical-cache-size-bytes) to limit the
cache size based on the estimated total size of cached objects.
The default values are 0 which has the interpretation “do not limit
based on the total estimated size”.
There are corresponding methods to read and set the new configuration
parameters.

	Connections now have a public opened attribute that is true when
the connection is open, and false otherwise. When true, it is the
seconds since the epoch (time.time()) when the connection was
opened. This is a renaming of the previous _opened private
variable.

	FileStorage now supports blobs directly.

	You can now control whether FileStorages keep .old files when packing.

	POSKeyErrors are no longer logged by ZEO servers, because they are
really client errors.

	A new storage interface, IExternalGC, to support external garbage
collection, http://wiki.zope.org/ZODB/ExternalGC, has been defined
and implemented for FileStorage and ClientStorage.

	As a small convenience (mainly for tests), you can now specify
initial data as a string argument to the Blob constructor.

	ZEO Servers now provide an option, invalidation-age, that allows
quick verification of ZEO clients have been disconnected for less
than a given time even if the number of transactions the client
hasn’t seen exceeds the invalidation queue size. This is only
recommended if the storage being served supports efficient iteration
from a point near the end of the transaction history.

	The FileStorage iterator now handles large files better. When
iterating from a starting transaction near the end of the file, the
iterator will scan backward from the end of the file to find the
starting point. This enhancement makes it practical to take
advantage of the new storage server invalidation-age option.

	Previously, database connections were managed as a stack. This
tended to cause the same connection(s) to be used over and over.
For example, the most used connection would typically be the only
connection used. In some rare situations, extra connections could
be opened and end up on the top of the stack, causing extreme memory
wastage. Now, when connections are placed on the stack, they sink
below existing connections that have more active objects.

	There is a new pool-timeout database configuration option to specify that
connections unused after the given time interval should be garbage
collection. This will provide a means of dealing with extra
connections that are created in rare circumstances and that would
consume an unreasonable amount of memory.

	The Blob open method now supports a new mode, ‘c’, to open committed
data for reading as an ordinary file, rather than as a blob file.
The ordinary file may be used outside the current transaction and
even after the blob’s database connection has been closed.

	ClientStorage now provides blob cache management. When using
non-shared blob directories, you can set a target cache size and the
cache will periodically be reduced try to keep it below the target size.

The client blob directory layout has changed. If you have existing
non-shared blob directories, you will have to remove them.

	ZODB 3.9 ZEO clients can connect to ZODB 3.8 servers. ZODB ZEO clients
from ZODB 3.2 on can connect to ZODB 3.9 servers.

	When a ZEO cache is stale and would need verification, a
ZEO.interfaces.StaleCache event is published (to zope.event).
Applications may handle this event and take action such as exiting
the application without verifying the cache or starting cold.

	There’s a new convenience function, ZEO.DB, for creating databases
using ZEO Client Storages. Just call ZEO.DB with the same arguments
you would otherwise pass to ZEO.ClientStorage.ClientStorage:

import ZEO
db = ZEO.DB(('some_host', 8200))

	Object saves are a little faster

	When configuring storages in a storage server, the storage name now
defaults to “1”. In the overwhelmingly common case that a single
storage, the name can now be omitted.

	FileStorage now provides optional garbage collection. A ‘gc’
keyword option can be passed to the pack method. A false value
prevents garbage collection.

	The FileStorage constructor now provides a boolean pack_gc option,
which defaults to True, to control whether garbage collection is
performed when packing by default. This can be overridden with the
gc option to the pack method.

The ZConfig configuration for FileStorage now includes a pack-gc
option, corresponding to the pack_gc constructor argument.

	The FileStorage constructor now has a packer keyword argument that
allows an alternative packer to be supplied.

The ZConfig configuration for FileStorage now includes a packer
option, corresponding to the packer constructor argument.

	MappingStorage now supports multi-version concurrency control and
iteration and provides a better storage implementation example.

	DemoStorage has a number of new features:

	The ability to use a separate storage, such as a file storage to
store changes

	Blob support

	Multi-version concurrency control and iteration

	Explicit support for demo-storage stacking via push and pop methods.

	Wen calling ZODB.DB to create a database, you can now pass a file
name, rather than a storage to use a file storage.

	Added support for copying and recovery of blob storages:

	Added a helper function, ZODB.blob.is_blob_record for testing whether
a data record is for a blob. This can be used when iterating over a
storage to detect blob records so that blob data can be copied.

In the future, we may want to build this into a blob-aware
iteration interface, so that records get blob file attributes
automatically.

	Added the IBlobStorageRestoreable interfaces for blob storages
that support recovery via a restoreBlob method.

	Updated ZODB.blob.BlobStorage to implement
IBlobStorageRestoreable and to have a copyTransactionsFrom method
that also copies blob data.

	New ClientStorage configuration option drop_cache_rather_verify.
If this option is true then the ZEO client cache is dropped instead of
the long (unoptimized) verification. For large caches, setting this
option can avoid effective down times in the order of hours when
the connection to the ZEO server was interrupted for a longer time.

	Cleaned-up the storage iteration API and provided an iterator implementation
for ZEO.

	Versions are no-longer supported.

	Document conflict resolution (see ZODB/ConflictResolution.txt).

	Support multi-database references in conflict resolution.

	Make it possible to examine oid and (in some situations) database
name of persistent object references during conflict resolution.

	Moved the ‘transaction’ module out of ZODB.
ZODB depends upon this module, but it must be installed separately.

	ZODB installation now requires setuptools.

	Added offset information to output of fstail
script. Added test harness for this script.

	Added support for read-only, historical connections based
on datetimes or serials (TIDs). See
src/ZODB/historical_connections.txt.

	Removed the ThreadedAsync module.

	Now depend on zc.lockfile

Bugs Fixed

	CVE-2009-2701: Fixed a vulnerability in ZEO storage servers when
blobs are available. Someone with write access to a ZEO server
configured to support blobs could read any file on the system
readable by the server process and remove any file removable by the
server process.

	BTrees (and TreeSets) kept references to internal keys.
https://bugs.launchpad.net/zope3/+bug/294788

	BTree Sets and TreeSets don’t support the standard set add method.
(Now either add or the original insert method can be used to add an
object to a BTree-based set.)

	The runzeo script didn’t work without a configuration file.
(https://bugs.launchpad.net/zodb/+bug/410571)

	Officially deprecated PersistentDict
(https://bugs.launchpad.net/zodb/+bug/400775)

	Calling __setstate__ on a persistent object could under certain
uncommon cause the process to crash.
(https://bugs.launchpad.net/zodb/+bug/262158)

	When committing transactions involving blobs to ClientStorages with
non-shared blob directories, a failure could occur in tpc_finish if
there was insufficient disk space to copy the blob file or if the
file wasn’t available. https://bugs.launchpad.net/zodb/+bug/224169

	Savepoint blob data wasn’t properly isolated. If multiple
simultaneous savepoints in separate transactions modified the same
blob, data from one savepoint would overwrite data for another.

	Savepoint blob data wasn’t cleaned up after a transaction abort.
https://bugs.launchpad.net/zodb/+bug/323067

	Opening a blob with modes ‘r+’ or ‘a’ would fail when the blob had no
committed changes.

	PersistentList’s sort method did not allow passing of keyword parameters.
Changed its sort parameter list to match that of its (Python 2.4+)
UserList base class.

	Certain ZEO server errors could cause a client to get into a state
where it couldn’t commit transactions.
https://bugs.launchpad.net/zodb/+bug/374737

	Fixed vulnerabilities in the ZEO network protocol that allow:

	CVE-2009-0668 Arbitrary Python code execution in ZODB ZEO storage servers

	CVE-2009-0669 Authentication bypass in ZODB ZEO storage servers

The vulnerabilities only apply if you are using ZEO to share a
database among multiple applications or application instances and if
untrusted clients are able to connect to your ZEO servers.

	Fixed the setup test command. It previously depended on private
functions in zope.testing.testrunner that don’t exist any more.

	ZEO client threads were unnamed, making it hard to debug thread
management.

	ZEO protocol 2 support was broken. This caused very old clients to
be unable to use new servers.

	zeopack was less flexible than it was before. -h should default to
local host.

	The “lawn” layout was being selected by default if the root of
the blob directory happened to contain a hidden file or directory
such as “.svn”. Now hidden files and directories are ignored
when choosing the default layout.

	BlobStorage was not compatible with MVCC storages because the
wrappers were being removed by each database connection. Fixed.

	Saving indexes for large file storages failed (with the error:
RuntimeError: maximum recursion depth exceeded). This can cause a
FileStorage to fail to start because it gets an error trying to save
its index.

	Sizes of new objects weren’t added to the object cache size
estimation, causing the object-cache size limiting feature to let
the cache grow too large when many objects were added.

	Deleted records weren’t removed when packing file storages.

	Fixed analyze.py and added test.

	fixed Python 2.6 compatibility issue with ZEO/zeoserverlog.py

	using hashlib.sha1 if available in order to avoid DeprecationWarning
under Python 2.6

	made runzeo -h work

	The monitor server didn’t correctly report the actual number of
clients.

	Packing could return spurious errors due to errors notifying
disconnected clients of new database size statistics.

	Undo sometimes failed for FileStorages configured to support blobs.

	Starting ClientStorages sometimes failed with non-new but empty
cache files.

	The history method on ZEO clients failed.

	Fix for bug #251037: Make packing of blob storages non-blocking.

	Fix for bug #220856: Completed implementation of ZEO authentication.

	Fix for bug #184057: Make initialisation of small ZEO client file cache
sizes not fail.

	Fix for bug #184054: MappingStorage used to raise a KeyError during load
instead of a POSKeyError.

	Fixed bug in Connection.TmpStore: load() would not defer to the backend
storage for loading blobs.

	Fix for bug #181712: Make ClientStorage update lastTransaction directly
after connecting to a server, even when no cache verification is necessary.

	Fixed bug in blob filesystem helper: the isSecure check was inverted.

	Fixed bug in transaction buffer: a tuple was unpacked incorrectly in
clear.

	Bugfix the situation in which comparing persistent objects (for
instance, as members in BTree set or keys of BTree) might cause data
inconsistency during conflict resolution.

	Fixed bug 153316: persistent and BTrees were using int
for memory sizes which caused errors on x86_64 Intel Xeon machines
(using 64-bit Linux).

	Fixed small bug that the Connection.isReadOnly method didn’t
work after a savepoint.

	Bug #98275: Made ZEO cache more tolerant when invalidating current
versions of objects.

	Fixed a serious bug that could cause client I/O to stop
(hang). This was accompanied by a critical log message along the
lines of: “RuntimeError: dictionary changed size during iteration”.

	Fixed bug #127182: Blobs were subclassable which was not desired.

	Fixed bug #126007: tpc_abort had untested code path that was
broken.

	Fixed bug #129921: getSize() function in BlobStorage could not
deal with garbage files

	Fixed bug in which MVCC would not work for blobs.

	Fixed bug in ClientCache that occurred with objects larger than the total
cache size.

	When an error occured attempting to lock a file and logging of said error was
enabled.

	FileStorages previously saved indexes after a certain
number of writes. This was done during the last phase of two-phase
commit, which made this critical phase more subject to errors than
it should have been. Also, for large databases, saves were done so
infrequently as to be useless. The feature was removed to reduce
the chance for errors during the last phase of two-phase commit.

	File storages previously kept an internal object id to
transaction id mapping as an optimization. This mapping caused
excessive memory usage and failures during the last phase of
two-phase commit. This optimization has been removed.

	Refactored handling of invalidations on ZEO clients to fix
a possible ordering problem for invalidation messages.

	On many systems, it was impossible to create more than 32K
blobs. Added a new blob-directory layout to work around this
limitation.

	Fixed bug that could lead to memory errors due to the use
of a Python dictionary for a mapping that can grow large.

	Fixed bug #251037: Made packing of blob storages non-blocking.

	Fixed a bug that could cause InvalidObjectReference errors
for objects that were explicitly added to a database if the object
was modified after a savepoint that added the object.

	Fixed several bugs that caused ZEO cache corruption when connecting
to servers. These bugs affected both persistent and non-persistent caches.

	Improved the the ZEO client shutdown support to try to
avoid spurious errors on exit, especially for scripts, such as zeopack.

	Packing failed for databases containing cross-database references.

	Cross-database references to databases with empty names
weren’t constructed properly.

	The zeo client cache used an excessive amount of memory, causing applications
with large caches to exhaust available memory.

	Fixed a number of bugs in the handling of persistent ZEO caches:

	Cache records are written in several steps. If a process exits
after writing begins and before it is finishes, the cache will be
corrupt on restart. The way records are written was changed to
make cache record updates atomic.

	There was no lock file to prevent opening a cache multiple times
at once, which would lead to corruption. Persistent caches now
use lock files, in the same way that file storages do.

	A bug in the cache-opening logic led to cache failure in the
unlikely event that a cache has no free blocks.

	When using ZEO Client Storages, Errors occured when trying to store
objects too big to fit in the ZEO cache file.

	Fixed bug in blob filesystem helper: the isSecure check was inverted.

	Fixed bug in transaction buffer: a tuple was unpacked incorrectly in
clear.

	Fixed bug in Connection.TmpStore: load() would not defer to the
back-end storage for loading blobs.

	Fixed bug #190884: Wrong reference to POSKeyError caused NameError.

	Completed implementation of ZEO authentication. This fixes issue 220856.

What’s new in ZODB 3.8.0

General

	(unreleased) Fixed setup.py use of setuptools vs distutils, so .c and .h
files are included in the bdist_egg.

	The ZODB Storage APIs have been documented and cleaned up.

	ZODB versions are now officially deprecated and support for them
will be removed in ZODB 3.9. (They have been widely recognized as
deprecated for quite a while.)

	Changed the automatic garbage collection when opening a connection to only
apply the garbage collections on those connections in the pool that are
closed. (This fixed issue 113923.)

ZEO

	(3.8a1) ZEO’s strategoes for avoiding client cache verification were
improved in the case that servers are restarted. Before, if
transactions were committed after the restart, clients that were up
to date or nearly up to date at the time of the restart and then
connected had to verify their caches. Now, it is far more likely
that a client that reconnects soon after a server restart won’t have
to verify its cache.

	(3.8a1) Fixed a serious bug that could cause clients that disconnect from and
reconnect to a server to get bad invalidation data if the server
serves multiple storages with active writes.

	(3.8a1) It is now theoretically possible to use a ClientStorage in a storage
server. This might make it possible to offload read load from a
storage server at the cost of increasing write latency. This should
increase write throughput by offloading reads from the final storage
server. This feature is somewhat experimental. It has tests, but
hasn’t been used in production.

Transactions

	(3.8a1) Add a doom() and isDoomed() interface to the transaction module.

First step towards the resolution of
http://www.zope.org/Collectors/Zope3-dev/655

A doomed transaction behaves exactly the same way as an active transaction
but raises an error on any attempt to commit it, thus forcing an abort.

Doom is useful in places where abort is unsafe and an exception cannot be
raised. This occurs when the programmer wants the code following the doom to
run but not commit. It is unsafe to abort in these circumstances as a
following get() may implicitly open a new transaction.

Any attempt to commit a doomed transaction will raise a DoomedTransaction
exception.

	(3.8a1) Clean up the ZODB imports in transaction.

Clean up weird import dance with ZODB. This is unnecessary since the
transaction module stopped being imported in ZODB/__init__.py in rev 39622.

	(3.8a1) Support for subtransactions has been removed in favor of
save points.

Blobs

	(3.8b1) Updated the Blob implementation in a number of ways. Some
of these are backward incompatible with 3.8a1:

o The Blob class now lives in ZODB.blob

o The blob openDetached method has been replaced by the committed method.

	(3.8a1) Added new blob feature. See the ZODB/Blobs directory for
documentation.

ZODB now handles (reasonably) large binary objects efficiently. Useful to
use from a few kilobytes to at least multiple hundred megabytes.

BTrees

	(3.8a1) Added support for 64-bit integer BTrees as separate types.

(For now, we’re retaining compile-time support for making the regular
integer BTrees 64-bit.)

	(3.8a1) Normalize names in modules so that BTrees, Buckets, Sets, and
TreeSets can all be accessed with those names in the modules (e.g.,
BTrees.IOBTree.BTree). This is in addition to the older names (e.g.,
BTrees.IOBTree.IOBTree). This allows easier drop-in replacement, which
can especially be simplify code for packages that want to support both
32-bit and 64-bit BTrees.

	(3.8a1) Describe the interfaces for each module and actually declare
the interfaces for each.

	(3.8a1) Fix module references so klass.__module__ points to the Python
wrapper module, not the C extension.

	(3.8a1) introduce module families, to group all 32-bit and all 64-bit
modules.

What’s new in ZODB3 3.7.0

Release date: 2007-04-20

Packaging

	(3.7.0b3) ZODB is now packaged without it’s dependencies

ZODB no longer includes copies of dependencies such as
ZConfig, zope.interface and so on. It now treats these as
dependencies. If ZODB is installed with easy_install or
zc.buildout, the dependencies will be installed automatically.

	(3.7.0b3) ZODB is now a buildout

ZODB checkouts are now built and tested using zc.buildout.

	(3.7b4) Added logic to avoid spurious errors from the logging system
on exit.

	(3.7b2) Removed the “sync” mode for ClientStorage.

Previously, a ClientStorage could be in either “sync” mode or “async”
mode. Now there is just “async” mode. There is now a dedicicated
asyncore main loop dedicated to ZEO clients.

Applications no-longer need to run an asyncore main loop to cause
client storages to run in async mode. Even if an application runs an
asyncore main loop, it is independent of the loop used by client
storages.

This addresses a test failure on Mac OS X,
http://www.zope.org/Collectors/Zope3-dev/650, that I believe was due
to a bug in sync mode. Some asyncore-based code was being called from
multiple threads that didn’t expect to be.

Converting to always-async mode revealed some bugs that weren’t caught
before because the tests ran in sync mode. These problems could
explain some problems we’ve seen at times with clients taking a long
time to reconnect after a disconnect.

Added a partial heart beat to try to detect lost connections that
aren’t otherwise caught,
http://mail.zope.org/pipermail/zodb-dev/2005-June/008951.html, by
perioidically writing to all connections during periods of inactivity.

Connection management

	(3.7a1) When more than pool_size connections have been closed,
DB forgets the excess (over pool_size) connections closed first.
Python’s cyclic garbage collection can take “a long time” to reclaim them
(and may in fact never reclaim them if application code keeps strong
references to them), but such forgotten connections can never be opened
again, so their caches are now cleared at the time DB forgets them.
Most applications won’t notice a difference, but applications that open
many connections, and/or store many large objects in connection caches,
and/or store limited resources (such as RDB connections) in connection
caches may benefit.

BTrees

	Support for 64-bit integer keys and values has been provided as a
compile-time option for the “I” BTrees (e.g. IIBTree).

Documentation

	(3.7a1) Thanks to Stephan Richter for converting many of the doctest
files to ReST format. These are now chapters in the Zope 3 apidoc too.

IPersistent

	(3.7a1) The documentation for _p_oid now specifies the concrete
type of oids (in short, an oid is either None or a non-empty string).

Testing

	(3.7b2) Fixed test-runner output truncation.

A bug was fixed in the test runner that caused result summaries to be
omitted when running on Windows.

Tools

	(3.7a1) The changeover from zLOG to the logging module means that some
tools need to perform minimal logging configuration themselves. Changed
the zeoup script to do so and thus enable it to emit error messages.

BTrees

	(3.7a1) Suppressed warnings about signedness of characters when
compiling under GCC 4.0.x. See http://www.zope.org/Collectors/Zope/2027.

Connection

	(3.7a1) An optimization for loading non-current data (MVCC) was
inadvertently disabled in _setstate(); this has been repaired.

persistent

	(3.7a1) Suppressed warnings about signedness of characters when
compiling under GCC 4.0.x. See http://www.zope.org/Collectors/Zope/2027.

	(3.7a1) PersistentMapping was inadvertently pickling volatile attributes
(http://www.zope.org/Collectors/Zope/2052).

After Commit hooks

	(3.7a1) Transaction objects have a new method,
addAfterCommitHook(hook, *args, **kws). Hook functions
registered with a transaction are called after the transaction
commits or aborts. For example, one might want to launch non
transactional or asynchrnonous code after a successful, or aborted,
commit. See test_afterCommitHook() in
transaction/tests/test_transaction.py for a tutorial doctest,
and the ITransaction interface for details.

What’s new in ZODB3 3.6.2?

Release date: 15-July-2006

DemoStorage

	
	(3.6.2) DemoStorage was unable to wrap base storages who did not have

	an ‘_oid’ attribute: most notably, ZEO.ClientStorage
(http://www.zope.org/Collectors/Zope/2016).

Following is combined news from internal releases (to support ongoing
Zope2 / Zope3 development). These are the dates of the internal releases:

	3.6.1 27-Mar-2006

	3.6.0 05-Jan-2006

	3.6b6 01-Jan-2006

	3.6b5 18-Dec-2005

	3.6b4 04-Dec-2005

	3.6b3 06-Nov-2005

	3.6b2 25-Oct-2005

	3.6b1 24-Oct-2005

	3.6a4 07-Oct-2005

	3.6a3 07-Sep-2005

	3.6a2 06-Sep-2005

	3.6a1 04-Sep-2005

Removal of Features Deprecated in ZODB 3.4

(3.6b2) ZODB 3.6 no longer contains features officially deprecated in the
ZODB 3.4 release. These include:

	get_transaction(). Use transaction.get() instead.
transaction.commit() is a shortcut spelling of
transaction.get().commit(), and transaction.abort()
of transaction.get().abort(). Note that importing ZODB no longer
installs get_transaction as a name in Python’s __builtin__
module either.

	The begin() method of Transaction objects. Use the begin()
method of a transaction manager instead. transaction.begin() is
a shortcut spelling to call the default transaction manager’s begin()
method.

	The dt argument to Connection.cacheMinimize().

	The Connection.cacheFullSweep() method. Use cacheMinimize()
instead.

	The Connection.getTransaction() method. Pass a transaction manager
to DB.open() instead.

	The Connection.getLocalTransaction() method. Pass a transaction
manager to DB.open() instead.

	The cache_deactivate_after and version_cache_deactivate_after
arguments to the DB constructor.

	The temporary, force, and waitflag arguments
to DB.open(). DB.open() no longer blocks (there’s no longer
a fixed limit on the number of open connections).

	The transaction and txn_mgr``arguments to ``DB.open(). Use
the transaction_manager argument instead.

	The getCacheDeactivateAfter, setCacheDeactivateAfter,
getVersionCacheDeactivateAfter and setVersionCacheDeactivateAfter
methods of DB.

Persistent

	(3.6.1) Suppressed warnings about signedness of characters when
compiling under GCC 4.0.x. See http://www.zope.org/Collectors/Zope/2027.

	(3.6a4) ZODB 3.6 introduces a change to the basic behavior of Persistent
objects in a particular end case. Before ZODB 3.6, setting
obj._p_changed to a true value when obj was a ghost was ignored:
obj remained a ghost, and getting obj._p_changed continued to
return None. Starting with ZODB 3.6, obj is activated instead
(unghostified), and its state is changed from the ghost state to the
changed state. The new behavior is less surprising and more robust.

	(3.6b5) The documentation for _p_oid now specifies the concrete
type of oids (in short, an oid is either None or a non-empty string).

Commit hooks

	(3.6a1) The beforeCommitHook() method has been replaced by the new
addBeforeCommitHook() method, with a more-robust signature.
beforeCommitHook() is now deprecated, and will be removed in ZODB 3.8.
Thanks to Julien Anguenot for contributing code and tests.

Connection management

	(3.6b6) When more than pool_size connections have been closed,
DB forgets the excess (over pool_size) connections closed first.
Python’s cyclic garbage collection can take “a long time” to reclaim them
(and may in fact never reclaim them if application code keeps strong
references to them), but such forgotten connections can never be opened
again, so their caches are now cleared at the time DB forgets them.
Most applications won’t notice a difference, but applications that open
many connections, and/or store many large objects in connection caches,
and/or store limited resources (such as RDB connections) in connection
caches may benefit.

ZEO

	(3.6a4) Collector 1900. In some cases of pickle exceptions raised by
low-level ZEO communication code, callers of marshal.encode() could
attempt to catch an exception that didn’t actually exist, leading to an
erroneous AttributeError exception. Thanks to Tres Seaver for the
diagnosis.

BaseStorage

	(3.6a4) Nothing done by tpc_abort() should raise an exception.
However, if something does (an error case), BaseStorage.tpc_abort()
left the commit lock in the acquired state, causing any later attempt
to commit changes hang.

Multidatabase

	(3.6b1) The database_name for a database in a multidatabase
collection can now be specified in a config file’s <zodb> section,
as the value of the optional new database_name key. The
.databases attribute cannot be specified in a config file, but
can be passed as the optional new databases argument to the
open() method of a ZConfig factory for type ZODBDatabase.
For backward compatibility, Zope 2.9 continues to allow using the
name in its <zodb_db name> config section as the database name
(note that <zodb_db> is defined by Zope, not by ZODB – it’s a
Zope-specific extension of ZODB’s <zodb> section).

PersistentMapping

	(3.6.1) PersistentMapping was inadvertently pickling volatile attributes
(http://www.zope.org/Collectors/Zope/2052).

	(3.6b4) PersistentMapping makes changes by a pop() method call
persistent now (http://www.zope.org/Collectors/Zope/2036).

	(3.6a1) The PersistentMapping class has an __iter__() method
now, so that objects of this type work well with Python’s iteration
protocol. For example, if x is a PersistentMapping (or
Python dictionary, or BTree, or PersistentDict, …), then
for key in x: iterates over the keys of x, list(x) creates
a list containing x’s keys, iter(x) creates an iterator for
x’s keys, and so on.

Tools

	(3.6b5) The changeover from zLOG to the logging module means that some
tools need to perform minimal logging configuration themselves. Changed
the zeoup script to do so and thus enable it to emit error messages.

BTrees

	(3.6.1) Suppressed warnings about signedness of characters when
compiling under GCC 4.0.x. See http://www.zope.org/Collectors/Zope/2027.

	(3.6a1) BTrees and Buckets now implement the setdefault() and pop()
methods. These are exactly like Python’s dictionary methods of the same
names, except that setdefault() requires both arguments (and Python is
likely to change to require both arguments too – defaulting the
default argument to None has no viable use cases). Thanks to
Ruslan Spivak for contributing code, tests, and documentation.

	(3.6a1) Collector 1873. It wasn’t possible to construct a BTree or Bucket
from, or apply their update() methods to, a PersistentMapping or
PersistentDict. This works now.

ZopeUndo

	(3.6a4) Collector 1810. A previous bugfix (#1726) broke listing undoable
transactions for users defined in a non-root acl_users folder. Zope logs
a acl_users path together with a username (separated by a space) and this
previous fix failed to take this into account.

Connection

	(3.6b5) An optimization for loading non-current data (MVCC) was
inadvertently disabled in _setstate(); this has been repaired.

Documentation

	(3.6b3) Thanks to Stephan Richter for converting many of the doctest
files to ReST format. These are now chapters in the Zope 3 apidoc too.

	(3.6b4) Several misspellings of “occurred” were repaired.

Development

	(3.6a1) The source code for the old ExtensionClass-based Persistence
package moved, from ZODB to the Zope 2.9 development tree. ZODB 3.5
makes no use of Persistence, and, indeed, the Persistence package could
not be compiled from a ZODB release, since some of the C header files
needed appear only in Zope.

	(3.6a3) Re-added the zeoctl module, for the same reasons
mkzeoinst was re-added (see below).

	(3.6a2) The mkzeoinst module was re-added to ZEO, because Zope3
has a script that expects to import it from there. ZODB’s mkzeoinst
script was rewritten to invoke the mkzeoinst module.

transact

	(3.6b4) Collector 1959: The undocumented transact module no
longer worked. It remains undocumented and untested, but thanks to
Janko Hauser it’s possible that it works again ;-).

What’s new in ZODB3 3.5.1?

Release date: 26-Sep-2005

Following is combined news from internal releases (to support ongoing
Zope3 development). These are the dates of the internal releases:

	3.5.1b2 07-Sep-2005

	3.5.1b1 06-Sep-2005

Build

	(3.5.1b2) Re-added the zeoctl module, for the same reasons
mkzeoinst was re-added (see below).

	(3.5.1b1) The mkzeoinst module was re-added to ZEO, because Zope3
has a script that expects to import it from there. ZODB’s mkzeoinst
script was rewritten to invoke the mkzeoinst module.

ZopeUndo

	(3.5.1) Collector 1810. A previous bugfix (#1726) broke listing undoable
transactions for users defined in a non-root acl_users folder. Zope logs
a acl_users path together with a username (separated by a space) and this
previous fix failed to take this into account.

What’s new in ZODB3 3.5.0?

Release date: 31-Aug-2005

Following is combined news from internal releases (to support ongoing
Zope3 development). These are the dates of the internal releases:

	3.5a7 11-Aug-2005

	3.5a6 04-Aug-2005

	3.5a5 19-Jul-2005

	3.5a4 14-Jul-2005

	3.5a3 17-Jun-2005

	3.5a2 16-Jun-2005

	3.5a1 10-Jun-2005

Savepoints

	(3.5.0) As for deprecated subtransaction commits, the intent was
that making a savepoint would invoke incremental garbage collection on
Connection memory caches, to try to reduce the number of objects in
cache to the configured cache size. Due to an oversight, this didn’t
happen, and stopped happening for subtransaction commits too. Making a
savepoint (or doing a subtransaction commit) does invoke cache gc now.

	(3.5a3) When a savepoint is made, the states of objects modified so far
are saved to a temporary storage (an instance of class TmpStore,
although that’s an internal implementation detail). That storage needs
to implement the full storage API too, but was missing the loadBefore()
method needed for MVCC to retrieve non-current revisions of objects. This
could cause spurious errors if a transaction with a pending savepoint
needed to fetch an older revision of some object.

	(3.5a4) The ISavepoint interface docs said you could roll back to a
given savepoint any number of times (until the transaction ends, or until
you roll back to an earlier savepoint’s state), but the implementation
marked a savepoint as invalid after its first use. The implementation has
been repaired, to match the docs.

ZEO client cache

	(3.5a6) Two memory leaks in the ZEO client cache were repaired, a
major one involving ZEO.cache.Entry objects, and a minor one involving
empty lists.

Subtransactions are deprecated

	(3.5a4) Subtransactions are deprecated, and will be removed in ZODB 3.7.
Use savepoints instead. Savepoints are more powerful, and code using
subtransactions does not mix well with code using savepoints (a
subtransaction commit forces all current savepoints to become unusable, so
code using subtransactions can hurt newer code trying to use savepoints).
In general, a subtransaction commit done just to free memory can be changed
from:

transaction.commit(1)

to:

transaction.savepoint(True)

That is, make a savepoint, and forget it. As shown, it’s best to pass
True for the optional optimistic argument in this case: because
there’s no possibility of asking for a rollback later, there’s no need
to insist that all data managers support rollback.

In rarer cases, a subtransaction commit is followed later by a
subtransaction abort. In that case, change the initial:

transaction.commit(1)

to:

sp = transaction.savepoint()

and in place of the subtransaction abort:

transaction.abort(1)

roll back the savepoint instead:

sp.rollback()

	(3.5a4) Internal uses of subtransactions (transaction commit() or
abort() passing a true argument) were rewritten to use savepoints
instead.

Multi-database

	(3.5a1) Preliminary support for persistent cross-database references has
been added. See ZODB/cross-database-references.txt for an
introduction.

Tools

	(3.5a6, 3.5a7) Collector #1847. The ZEO client cache tracing and simulation
tools weren’t updated to work with ZODB 3.3, and the introduction of
MVCC required major reworking of the tracing and simulation code. These
tools are in a working state again, although so far lightly tested on
just a few applications. In doc/ZEO/, see the heavily revised
trace.txt and cache.txt.

	(3.5a5) Collector #1846: If an uncommitted transaction was found,
fsrecover.py fell into an infinite loop.

Windows

	(3.5a6) As developed in a long thread starting at
http://mail.zope.org/pipermail/zope/2005-July/160433.html
there appears to be a race bug in the Microsoft Windows socket
implementation, rarely visible in ZEO when multiple processes try to
create an “asyncore trigger” simultaneously. Windows-specific code in
ZEO/zrpc/trigger.py changed to work around this bug when it occurs.

ThreadedAsync.LoopCallback

	(3.5a5) This once again physically replaces Python’s asyncore.loop
function with its own loop function, because it turns out Zope relied on
the seemingly unused LoopCallback.exit_status global, which was
removed in the change described below. Python’s asyncore.loop is again
not invoked, so any breakpoints or debugging prints added to that are again
“lost”.

	(3.5a4) This replaces Python’s asyncore.loop function with its own, in
order to get notified when loop() is first called. The signature of
asyncore.loop changed in Python 2.4, but LoopCallback.loop’s
signature didn’t change to match. The code here was repaired to be
compatible with both old and new signatures, and also repaired to invoke
Python’s asyncore.loop() instead of replacing it entirely (so, for
example, debugging prints added to Python’s asyncore.loop won’t be
lost anymore).

FileStorage

	(3.5a4) Collector #1830. In some error cases when reading a FileStorage
index, the code referenced an undefined global.

	(3.5a4) Collector #1822. The undoLog() and undoInfo() methods
were changed in 3.4a9 to return the documented results. Alas, some pieces
of (non-ZODB) code relied on the actual behavior. When the first and
last arguments are both >= 0, these methods now treat them as if they
were Python slice indices, including the first index but excluding the
last index. This matches former behavior, although it contradicts older
ZODB UML documentation. The documentation in
ZODB.interfaces.IStorageUndoable was changed to match the new intent.

	(3.5a2) The _readnext() method now returns the transaction size as
the value of the “size” key. Thanks to Dieter Maurer for the patch, from
http://mail.zope.org/pipermail/zodb-dev/2003-October/006157.html. “This is
very valuable when you want to spot strange transaction sizes via Zope’s
‘Undo’ tab”.

BTrees

	(3.5.a5) Collector 1843. When a non-integer was passed to a method like
keys() of a Bucket or Set with integer keys, an internal error code
was overlooked, leading to everything from “delayed errors” to segfaults.
Such cases raise TypeError now, as intended.

	(3.5a4) Collector 1831. The BTree minKey() and maxKey() methods
gave a misleading message if no key satisfying the constraints existed in a
non-empty tree.

	(3.5a4) Collector 1829. Clarified that the minKey() and maxKey()
methods raise an exception if no key exists satsifying the constraints.

	(3.5a4) The ancient convert.py script was removed. It was intended to
convert “old” BTrees to “new” BTrees, but the “old” BTree implementation
was removed from ZODB years ago.

What’s new in ZODB3 3.4.1?

Release date: 09-Aug-2005

Following are dates of internal releases (to support ongoing Zope 2
development) since ZODB 3.4’s last public release:

	3.4.1b5 08-Aug-2005

	3.4.1b4 07-Aug-2005

	3.4.1b3 04-Aug-2005

	3.4.1b2 02-Aug-2005

	3.4.1b1 26-Jul-2005

	3.4.1a6 19-Jul-2005

	3.4.1a5 12-Jul-2005

	3.4.1a4 08-Jul-2005

	3.4.1a3 02-Jul-2005

	3.4.1a2 29-Jun-2005

	3.4.1a1 27-Jun-2005

Savepoints

	(3.4.1a1) When a savepoint is made, the states of objects modified so far
are saved to a temporary storage (an instance of class TmpStore,
although that’s an internal implementation detail). That storage needs
to implement the full storage API too, but was missing the loadBefore()
method needed for MVCC to retrieve non-current revisions of objects. This
could cause spurious errors if a transaction with a pending savepoint
needed to fetch an older revision of some object.

	(3.4.1a5) The ISavepoint interface docs said you could roll back to a
given savepoint any number of times (until the transaction ends, or until
you roll back to an earlier savepoint’s state), but the implementation
marked a savepoint as invalid after its first use. The implementation has
been repaired, to match the docs.

	(3.4.1b4) Collector 1860: use an optimistic savepoint in ExportImport
(there’s no possiblity of rollback here, so no need to insist that the
data manager support rollbacks).

ZEO client cache

	(3.4.1b3) Two memory leaks in the ZEO client cache were repaired, a
major one involving ZEO.cache.Entry objects, and a minor one involving
empty lists.

Subtransactions

	(3.4.1a5) Internal uses of subtransactions (transaction commit() or
abort() passing a true argument) were rewritten to use savepoints
instead. Application code is strongly encouraged to do this too:
subtransactions are weaker, will be deprecated soon, and do not mix well
with savepoints (when you do a subtransaction commit, all current
savepoints are made unusable). In general, a subtransaction commit
done just to free memory can be changed from:

transaction.commit(1)

to:

transaction.savepoint(True)

That is, make a savepoint, and forget it. As shown, it’s best to pass
True for the optional optimistic argument in this case: because
there’s no possibility of asking for a rollback later, there’s no need
to insist that all data managers support rollback.

In rarer cases, a subtransaction commit is followed later by a
subtransaction abort. In that case, change the initial:

transaction.commit(1)

to:

sp = transaction.savepoint()

and in place of the subtransaction abort:

transaction.abort(1)

roll back the savepoint instead:

sp.rollback()

FileStorage

	(3.4.1a3) Collector #1830. In some error cases when reading a FileStorage
index, the code referenced an undefined global.

	(3.4.1a2) Collector #1822. The undoLog() and undoInfo() methods
were changed in 3.4a9 to return the documented results. Alas, some pieces
of (non-ZODB) code relied on the actual behavior. When the first and
last arguments are both >= 0, these methods now treat them as if they
were Python slice indices, including the first index but excluding the
last index. This matches former behavior, although it contradicts older
ZODB UML documentation. The documentation in
ZODB.interfaces.IStorageUndoable was changed to match the new intent.

	(3.4.1a1) The UndoSearch._readnext() method now returns the transaction
size as the value of the “size” key. Thanks to Dieter Maurer for the
patch, from
http://mail.zope.org/pipermail/zodb-dev/2003-October/006157.html. “This is
very valuable when you want to spot strange transaction sizes via Zope’s
‘Undo’ tab”.

ThreadedAsync.LoopCallback

	(3.4.1a6) This once again physically replaces Python’s asyncore.loop
function with its own loop function, because it turns out Zope relied on
the seemingly unused LoopCallback.exit_status global, which was
removed in the change described below. Python’s asyncore.loop is again
not invoked, so any breakpoints or debugging prints added to that are again
“lost”.

	(3.4.1a1) This replaces Python’s asyncore.loop function with its own,
in order to get notified when loop() is first called. The signature of
asyncore.loop changed in Python 2.4, but LoopCallback.loop’s
signature didn’t change to match. The code here was repaired to be
compatible with both old and new signatures, and also repaired to invoke
Python’s asyncore.loop() instead of replacing it entirely (so, for
example, debugging prints added to Python’s asyncore.loop won’t be lost
anymore).

Windows

	(3.4.1b2) As developed in a long thread starting at
http://mail.zope.org/pipermail/zope/2005-July/160433.html
there appears to be a race bug in the Microsoft Windows socket
implementation, rarely visible in ZEO when multiple processes try to
create an “asyncore trigger” simultaneously. Windows-specific code in
ZEO/zrpc/trigger.py changed to work around this bug when it occurs.

Tools

	(3.4.1b1 thru 3.4.1b5) Collector #1847. The ZEO client cache tracing and
simulation tools weren’t updated to work with ZODB 3.3, and the
introduction of MVCC required major reworking of the tracing and simulation
code. These tools are in a working state again, although so far lightly
tested on just a few applications. In doc/ZEO/, see the heavily revised
trace.txt and cache.txt.

	(3.4.1a6) Collector #1846: If an uncommitted transaction was found,
fsrecover.py fell into an infinite loop.

DemoStorage

	(3.4.1a1) The implementation of undoLog() was wrong in several ways;
repaired.

BTrees

	(3.4.1a6) Collector 1843. When a non-integer was passed to a method like
keys() of a Bucket or Set with integer keys, an internal error code
was overlooked, leading to everything from “delayed errors” to segfaults.
Such cases raise TypeError now, as intended.

	(3.4.1a4) Collector 1831. The BTree minKey() and maxKey() methods
gave a misleading message if no key satisfying the constraints existed in a
non-empty tree.

	(3.4.1a3) Collector 1829. Clarified that the minKey() and maxKey()
methods raise an exception if no key exists satsifying the constraints.

What’s new in ZODB3 3.4?

Release date: 09-Jun-2005

Following is combined news from the “internal releases” (to support
ongoing Zope 2.8 and Zope3 development) since the last public ZODB 3.4
release. These are the dates of the internal releases:

	3.4c2 06-Jun-2005

	3.4c1 03-Jun-2005

	3.4b3 27-May-2005

	3.4b2 26-May-2005

Connection, DB

	(3.4b3) .transaction_manager is now a public attribute of
IDataManager, and is the instance of ITransactionManager used by the
data manager as its transaction manager. There was previously no way
to ask a data manager which transaction manager it was using. It’s
intended that transaction_manager be treated as read-only.

	(3.4b3) For sanity, the txn_mgr argument to DB.open(),
Connection.__init__(), and Connection._setDB() has been renamed
to transaction_manager. txn_mgr is still accepted, but is
deprecated and will be removed in ZODB 3.6. Any code that was using
the private ._txn_mgr attribute of Connection will break
immediately.

Development

	(3.4b2) ZODB’s test.py is now a small driver for the shared
zope.testing.testrunner. See the latter’s documentation
for command-line arguments.

Error reporting

	(3.4c1) In the unlikely event that referencesf() reports an unpickling
error (for example, a corrupt database can cause this), the message it
produces no longer contains unprintable characters.

Tests

	(3.4c2) checkCrossDBInvalidations suffered spurious failures too often
on slow and/or busy machines. The test is willing to wait longer for
success now.

What’s new in ZODB3 3.4b1?

Release date: 19-May-2005

What follows is combined news from the “internal releases” (to support
ongoing Zope 2.8 and Zope3 development) since the last public ZODB 3.4
release. These are the dates of the internal releases:

	3.4b1 19-May-2005

	3.4a9 12-May-2005

	3.4a8 09-May-2005

	3.4a7 06-May-2005

	3.4a6 05-May-2005

	3.4a5 25-Apr-2005

	3.4a4 23-Apr-2005

	3.4a3 13-Apr-2005

	3.4a2 03-Apr-2005

transaction

	(3.4a7) If the first activity seen by a new ThreadTransactionManager was
an explicit begin() call, then synchronizers registered after that (but
still during the first transaction) were not communicated to the
transaction object. As a result, the afterCompletion() methods of
registered synchronizers weren’t called when the first transaction ended.

	(3.4a6) Doing a subtransaction commit erroneously processed invalidations,
which could lead to an inconsistent view of the database. For example, let
T be the transaction of which the subtransaction commit was a part. If T
read a persistent object O’s state before the subtransaction commit, did not
commit new state of its own for O during its subtransaction commit, and O
was modified before the subtransaction commit by a different transaction,
then the subtransaction commit processed an invalidation for O, and the
state T read for O originally was discarded in T. If T went on to access O
again, it saw the newly committed (by a different transaction) state for O:

o_attr = O.some_attribute
get_transaction().commit(True)
assert o_attr == O.some_attribute

could fail, and despite that T never modifed O.

	(3.4a4) Transactions now support savepoints. Savepoints allow changes to be
periodically checkpointed within a transaction. You can then rollback to a
previously created savepoint. See transaction/savepoint.txt.

	(3.4a6) A getBeforeCommitHooks() method was added. It returns an
iterable producing the registered beforeCommit hooks.

	(3.4a6) The ISynchronizer interface has a new newTransaction()
method. This is invoked whenever a transaction manager’s begin() method
is called. (Note that a transaction object’s (as opposed to a transaction
manager’s) begin() method is deprecated, and newTransaction() is
not called when using the deprecated method.)

	(3.4a6) Relatedly, Connection implements ISynchronizer, and
Connection’s afterCompletion() and newTransaction() methods now
call sync() on the underlying storage (if the underlying storage has
such a method), in addition to processing invalidations. The practical
implication is that storage synchronization will be done automatically now,
whenever a transaction is explicitly started, and after top-level
transaction commit or abort. As a result, Connection.sync() should
virtually never be needed anymore, and will eventually be deprecated.

	(3.4a3) Transaction objects have a new method, beforeCommitHook(hook,
*args, **kws). Hook functions registered with a transaction are called
at the start of a top-level commit, before any of the work is begun, so a
hook function can perform any database operations it likes. See
test_beforeCommitHook() in transaction/tests/test_transaction.py
for a tutorial doctest, and the ITransaction interface for details.
Thanks to Florent Guillaume for contributing code and tests.

	(3.4a3) Clarifications were made to transaction interfaces.

Support for ZODB4 savepoint-aware data managers has been dropped

	(3.4a4) In adding savepoint support, we dropped the attempted support for
ZODB4 data managers that support savepoints. We don’t think that this will
affect anyone.

ZEO

	(3.4a4) The ZODB and ZEO version numbers are now the same. Concretely:

import ZODB, ZEO
assert ZODB.__version__ == ZEO.version

no longer fails. If interested, see the README file for details about
earlier version numbering schemes.

	(3.4b1) ZConfig version 2.3 adds new socket address types, for smoother
default behavior across platforms. The hostname portion of
socket-binding-address defaults to an empty string, which acts like
INADDR_ANY on Windows and Linux (bind to any interface). The hostname
portion of socket-connection-address defaults to “127.0.0.1” (aka
“localhost”). In config files, the types of zeo section keys
address and monitor-address changed to socket-binding-address,
and the type of the zeoclient section key server changed to
socket-connection-address.

	(3.4a4) The default logging setup in runzeo.py was broken. It was
changed so that running runzeo.py from a command line now, and without
using a config file, prints output to the console much as ZODB 3.2 did.

ZEO on Windows

Thanks to Mark Hammond for these runzeo.py enhancements on Windows:

	(3.4b1) Collector 1788: Repair one of the new features below.

	(3.4a4) A pid file (containing the process id as a decimal string) is
created now for a ZEO server started via runzeo.py. External programs
can read the pid from this file and derive a “signal name” used in a new
signal-emulation scheme for Windows. This is only necessary on Windows,
but the pid file is created on all platforms that implement
os.getpid(), as long as the pid-filename option is set, or
environment variable INSTANCE_HOME is defined. The pid-filename
option can be set in a ZEO config file, or passed as the new --pid-file
argument to runzeo.py.

	(3.4a4) If available, runzeo.py now uses Zope’s new ‘Signal’ mechanism
for Windows, to implement clean shutdown and log rotation handlers for
Windows. Note that the Python in use on the ZEO server must also have the
Python Win32 extensions installed for this to be useful.

Tools

	(3.4a4) fsdump.py now displays the size (in bytes) of data records.
This actually went in several months go, but wasn’t noted here at the time.
Thanks to Dmitry Vasiliev for contributing code and tests.

FileStorage

	(3.4a9) The undoLog() and undoInfo() methods almost always returned
a wrong number of results, one too many if last < 0 (the default is
such a case), or one too few if last >= 0. These have been repaired,
new tests were added, and these methods are now documented in
ZODB.interfaces.IStorageUndoable.

	(3.4a2) A pdb.set_trace() call was mistakenly left in method
FileStorage.modifiedInVersion().

ZConfig

	(3.4b1) The “standalone” release of ZODB now includes ZConfig version 2.3.

DemoStorage

	(3.4a4) Appropriate implementations of the storage API’s registerDB()
and new_oid() methods were added, delegating to the base storage. This
was needed to support wrapping a ZEO client storage as a DemoStorage
base storage, as some new Zope tests want to do.

BaseStorage

	(3.4a4) new_oid()’s undocumented last= argument was removed. It
was used only for internal recursion, and injured code sanity elsewhere
because not all storages included it in their new_oid()’s signature.
Straightening this out required adding last= everywhere, or removing it
everywhere. Since recursion isn’t actually needed, and there was no other
use for last=, removing it everywhere was the obvious choice.

Tests

	(3.4a3) The various flavors of the check2ZODBThreads and
check7ZODBThreads tests are much less likely to suffer sproadic
failures now.

	(3.4a2) The test checkOldStyleRoot failed in Zope3, because of an
obscure dependence on the Persistence package (which Zope3 doesn’t use).

ZApplication

	(3.4a8) The file ZApplication.py was moved, from ZODB to Zope(2). ZODB
and Zope3 don’t use it, but Zope2 does.

	(3.4a7) The __call__ method didn’t work if a non-None connection
string argument was passed. Thanks to Stefan Holek for noticing.

What’s new in ZODB3 3.4a1?

Release date: 01-Apr-2005

transaction

	get_transaction() is officially deprecated now, and will be removed
in ZODB 3.6. Use the transaction package instead. For example,
instead of:

import ZODB
...
get_transaction().commit()

do:

import transaction
...
transaction.commit()

DB

	There is no longer a hard limit on the number of connections that
DB.open() will create. In other words, DB.open() never blocks
anymore waiting for an earlier connection to close, and DB.open()
always returns a connection now (while it wasn’t documented, it was
possible for DB.open() to return None before).

pool_size continues to default to 7, but its meaning has changed:
if more than pool_size connections are obtained from DB.open()
and not closed, a warning is logged; if more than twice pool_size, a
critical problem is logged. pool_size should be set to the maximum
number of connections from the DB instance you expect to have open
simultaneously.

In addition, if a connection obtained from DB.open() becomes
unreachable without having been explicitly closed, when Python’s garbage
collection reclaims that connection it no longer counts against the
pool_size thresholds for logging messages.

The following optional arguments to DB.open() are deprecated:
transaction, waitflag, force and temporary. If one
is specified, its value is ignored, and DeprecationWarning is
raised. In ZODB 3.6, these optional arguments will be removed.

	Lightweight support for “multi-databases” is implemented. These are
collections of named DB objects and associated open Connections, such
that the Connection for any DB in the collection can be obtained from
a Connection from any other DB in the collection. See the new test
file ZODB/tests/multidb.txt for a tutorial doctest. Thanks to Christian
Theune for his work on this during the PyCon 2005 ZODB sprint.

ZEO compatibility

There are severe restrictions on using ZEO servers and clients at or after
ZODB 3.3 with ZEO servers and clients from ZODB versions before 3.3. See the
reworked Compatibility section in README.txt for details. If
possible, it will be easiest to move clients and servers to 3.3+
simultaneously. With care, it’s possible to use a 3.3+ ZEO server with
pre-3.3 ZEO clients, but not possible to use a pre-3.3 ZEO server with 3.3+
ZEO clients.

BTrees

	A new family of BTree types, in the IFBTree module, map
signed integers (32 bits) to C floats (also 32 bits). The
intended use is to help construct search indices, where, e.g.,
integer word or document identifiers map to scores of some
kind. This is easier than trying to work with scaled integer
scores in an IIBTree, and Zope3 has moved to IFBTrees
for these purposes in its search code.

FileStorage

	Addded a record iteration protocol to FileStorage. You can use the
record iterator to iterate over all current revisions of data
pickles in the storage.

In order to support calling via ZEO, we don’t implement this as an
actual iterator. An example of using the record iterator protocol
is as follows:

storage = FileStorage('anexisting.fs')
next_oid = None
while True:
 oid, tid, data, next_oid = storage.record_iternext(next_oid)
 # do something with oid, tid and data
 if next_oid is None:
 break

The behavior of the iteration protocol is now to iterate over all
current records in the database in ascending oid order, although
this is not a promise to do so in the future.

Tools

New tool fsoids.py, for heavy debugging of FileStorages; shows all
uses of specified oids in the entire database (e.g., suppose oid 0x345620
is missing – did it ever exist? if so, when? who referenced it? when
was the last transaction that modified an object that referenced it?
which objects did it reference? what kind of object was it?).
ZODB/test/testfsoids.py is a tutorial doctest.

fsIndex

Efficient, general implementations of minKey() and maxKey() methods
were added. fsIndex is a special hybrid kind of BTree used to implement
FileStorage indices. Thanks to Chris McDonough for code and tests.

What’s new in ZODB3 3.3.1?

Release date: DD-MMM-2005

Tests

The various flavors of the check2ZODBThreads and check7ZODBThreads
tests are much less likely to suffer sproadic failures now.

What’s new in ZODB3 3.3.1c1?

Release date: 01-Apr-2005

BTrees

Collector #1734: BTrees conflict resolution leads to index inconsistencies.

Silent data loss could occur due to BTree conflict resolution when one
transaction T1 added a new key to a BTree containing at least three buckets,
and a concurrent transaction T2 deleted all keys in the bucket to which the
new key was added. Conflict resolution then created a bucket containing the
newly added key, but the bucket remained isolated, disconnected from the
BTree. In other words, the committed BTree didn’t contain the new key added by
T1. Conflict resolution doesn’t have enough information to repair this,
so ConflictError is now raised in such cases.

ZEO

Repaired subtle race conditions in establishing ZEO connections, both client-
and server-side. These account for intermittent cases where ZEO failed
to make a connection (or reconnection), accompanied by a log message showing
an error caught in asyncore and having a traceback ending with:

UnpicklingError: invalid load key, 'Z'.

or:

ZRPCError: bad handshake '(K\x00K\x00U\x0fgetAuthProtocol)t.'

or:

error: (9, 'Bad file descriptor')

or an AttributeError.

These were exacerbated when running the test suite, because of an unintended
busy loop in the test scaffolding, which could starve the thread trying to
make a connection. The ZEO reconnection tests may run much faster now,
depending on platform, and should suffer far fewer (if any) intermittent
“timed out waiting for storage to connect” failures.

ZEO protocol and compatibility

ZODB 3.3 introduced multiversion concurrency control (MVCC), which required
changes to the ZEO protocol. The first 3.3 release should have increased
the internal ZEO protocol version number (used by ZEO protocol negotiation
when a client connects), but neglected to. This has been repaired.

Compatibility between pre-3.3 and post-3.3 ZEO clients and servers remains
very limited. See the newly updated Compatibility section in
README.txt for details.

FileStorage

	The .store() and .restore() methods didn’t update the storage’s
belief about the largest oid in use when passed an oid larger than the
largest oid the storage already knew about. Because .restore() in
particular is used by copyTransactionsFrom(), and by the first stage
of ZRS recovery, a large database could be created that believed the only
oid in use was oid 0 (the special oid reserved for the root object). In
rare cases, it could go on from there assigning duplicate oids to new
objects, starting over from oid 1 again. This has been repaired. A
new set_max_oid() method was added to the BaseStorage class so
that derived storages can update the largest oid in use in a threadsafe
way.

	A FileStorage’s index file tried to maintain the index’s largest oid as a
separate piece of data, incrementally updated over the storage’s lifetime.
This scheme was more complicated than necessary, so was also more brittle
and slower than necessary. It indirectly participated in a rare but
critical bug: when a FileStorage was created via
copyTransactionsFrom(), the “maximum oid” saved in the index file was
always 0. Use that FileStorage, and it could then create “new” oids
starting over at 0 again, despite that those oids were already in use by
old objects in the database. Packing a FileStorage has no reason to
try to update the maximum oid in the index file either, so this kind of
damage could (and did) persist even across packing.

The index file’s maximum-oid data is ignored now, but is still written
out so that .index files can be read by older versions of ZODB.
Finding the true maximum oid is done now by exploiting that the main
index is really a kind of BTree (long ago, this wasn’t true), and finding
the largest key in a BTree is inexpensive.

	A FileStorage’s index file could be updated on disk even if the storage
was opened in read-only mode. That bug has been repaired.

	An efficient maxKey() implementation was added to class fsIndex.

Pickle (in-memory Connection) Cache

You probably never saw this exception:

ValueError: Can not re-register object under a different oid

It’s been changed to say what it meant:

ValueError: A different object already has the same oid

This happens if an attempt is made to add distinct objects to the cache
that have the same oid (object identifier). ZODB should never do this,
but it’s possible for application code to force such an attempt.

PersistentMapping and PersistentList

Backward compatibility code has been added so that the sanest of the
ZODB 3.2 dotted paths for PersistentMapping and PersistentList
resolve. These are still preferred:

	from persistent.list import PersistentList

	from persistent.mapping import PersistentMapping

but these work again too:

	from ZODB.PersistentList import PersistentList

	from ZODB.PersistentMapping import PersistentMapping

BTrees

The BTrees interface file neglected to document the optional
excludemin and excludemax arguments to the keys(), values()
and items() methods. Appropriate changes were merged in from the
ZODB4 BTrees interface file.

Tools

	mkzeoinst.py’s default port number changed from to 9999 to 8100, to
match the example in Zope’s zope.conf.

fsIndex

An efficient maxKey() method was implemented for the fsIndex class.
This makes it possible to determine the largest oid in a FileStorage
index efficiently, directly, and reliably, replacing a more delicate scheme
that tried to keep track of this by saving an oid high water mark in the
index file and incrementally updating it.

What’s new in ZODB3 3.3.1a1?

Release date: 11-Jan-2005

ZEO client cache

	Collector 1536: The cache-size configuration option for ZEO clients
was being ignored. Worse, the client cache size was only one megabyte,
much smaller than the advertised default of 20MB. Note that the default
is carried over from a time when gigabyte disks were expensive and rare;
20MB is also too small on most modern machines.

	Fixed a nasty bug in cache verification. A persistent ZEO cache uses a
disk file, and, when active, has some in-memory data structures too to
speed operation. Invalidations processed as part of startup cache
verification were reflected in the in-memory data structures, but not
correctly in the disk file. So if an object revision was invalidated as
part of verification, the object wasn’t loaded again before the connection
was closed, and the object revision remained in the cache file until the
connection was closed, then the next time the cache file was opened it
could believe that the stale object revision in the file was actually
current.

	Fixed a bug wherein an object removed from the client cache didn’t
properly mark the file slice it occupied as being available for reuse.

ZEO

Collector 1503: excessive logging. It was possible for a ZEO client to
log “waiting for cache verification to finish” messages at a very high
rate, producing gigabytes of such messages in short order.
ClientStorage._wait_sync() was changed to log no more than one
such message per 5 minutes.

persistent

Collector #1350: ZODB has a default one-thread-per-connection model, and
two threads should never do operations on a single connection
simultaneously. However, ZODB can’t detect violations, and this happened
in an early stage of Zope 2.8 development. The low-level ghostify()
and unghostify() routines in cPerisistence.c were changed to give
some help in detecting this when it happens. In a debug build, both abort
the process if thread interference is detected. This is extreme, but
impossible to overlook. In a release build, unghostify() raises
SystemError if thread damage is detected; ghostify() ignores the
problem in a release build (ghostify() is supposed to be so simple that
it “can’t fail”).

ConflictError

New in 3.3, a ConflictError exception may attempt to insert the path to
the object’s class in its message. However, a ZEO server may not have
access to application class implementations, and then the attempt by the
server to raise ConflictError could raise ImportError instead while
trying to determine the object’s class path. This was confusing. The code
has been changed to obtain the class path from the object’s pickle, without
trying to import application modules or classes.

FileStorage

Collector 1581: When an attempt to pack a corrupted Data.fs file was
made, it was possible for the pack routine to die with a reference to an
undefined global while it was trying to raise CorruptedError. It
raises CorruptedError, as it always intended, in these cases now.

Install

The C header file ring.h is now installed.

Tools

	BTrees.check.display() now displays the oids (if any) of the
BTree’s or TreeSet’s constituent objects.

What’s new in ZODB3 3.3?

Release date: 06-Oct-2004

ZEO

The encoding of RPC calls between server and client was being done
with protocol 0 (“text mode”) pickles, which could require sending
four times as many bytes as necessary. Protocol 1 pickles are used
now. Thanks to Andreas Jung for the diagnosis and cure.

ZODB/component.xml

cache-size parameters were changed from type integer to
type byte-size. This allows you to specify, for example,
“cache-size 20MB” to get a 20 megabyte cache.

transaction

The deprecation warning for Transaction.begin() was changed to
point to the caller, instead of to Transaction.begin() itself.

Connection

Restored Connection’s private _opened attribute. This was still
referenced by DB.connectionDebugInfo(), and Zope 2 calls the latter.

FileStorage

Collector #1517: History tab for ZPT does not work. FileStorage.history()
was reading the user, description, and extension fields out of the object
pickle, due to starting the read at a wrong location. Looked like
cut-and-paste repetition of the same bug in FileStorage.FileIterator
noted in the news for 3.3c1.

What’s new in ZODB3 3.3 release candidate 1?

Release date: 14-Sep-2004

Connection

ZODB intends to raise ConnnectionStateError if an attempt is made to
close a connection while modifications are pending (the connection is
involved in a transaction that hasn’t been abort()’ed or
commit()’ed). It was missing the case where the only pending
modifications were made in subtransactions. This has been fixed. If an
attempt to close a connection with pending subtransactions is made now:

ConnnectionStateError: Cannot close a connection with a pending subtransaction

is raised.

transaction

	Transactions have new, backward-incompatible behavior in one respect:
if a Transaction.commit(), Transaction.commit(False), or
Transaction.commit(True) raised an exception, prior behavior was that
the transaction effectively aborted, and a new transaction began.
A primary bad consequence was that, if in a sequence of subtransaction
commits, one of the commits failed but the exception was suppressed,
all changes up to and including the failing commit were lost, but
later subtransaction commits in the sequence got no indication that
something had gone wrong, nor did the final (top level) commit. This
could easily lead to inconsistent data being committed, from the
application’s point of view.

The new behavior is that a failing commit “sticks” until explicitly
cleared. Now if an exception is raised by a commit() call (whether
subtransaction or top level) on a Transaction object T:

	Pending changes are aborted, exactly as they were for a failing
commit before.

	But T remains the current transaction object (if tm is T’s
transaction manger, tm.get() continues to return T).

	All subsequent attempts to do T.commit(), T.join(), or
T.register() raise the new TransactionFailedError exception.
Note that if you try to modify a persistent object, that object’s
resource manager (usually a Connection object) will attempt to
join() the failed transaction, and TransactionFailedError
will be raised right away.

So after a transaction or subtransaction commit fails, that must be
explicitly cleared now, either by invoking abort() on the transaction
object, or by invoking begin() on its transaction manager.

	Some explanations of new transaction features in the 3.3a3 news
were incorrect, and this news file has been retroactively edited to
repair that. See news for 3.3a3 below.

	If ReadConflictError was raised by an attempt to load an object with a
_p_independent() method that returned false, attempting to commit the
transaction failed to (re)raise ReadConflictError for that object. Note
that ZODB intends to prevent committing a transaction in which a
ReadConflictError occurred; this was an obscure case it missed.

	Growing pains: ZODB 3.2 had a bug wherein Transaction.begin() didn’t
abort the current transaction if the only pending changes were in a
subtransaction. In ZODB 3.3, it’s intended that a transaction manager be
used to effect begin() (instead of invoking Transaction.begin()),
and calling begin() on a transaction manager didn’t have this old
bug. However, Transaction.begin() still exists in 3.3, and it had a
worse bug: it never aborted the transaction (not even if changes were
pending outside of subtransactions). Transaction.begin() has been
changed to abort the transaction. Transaction.begin() is also
deprecated. Don’t use it. Use begin() on the relevant transaction
manager instead. For example,

>>> import transaction
>>> txn = transaction.begin() # start a txn using the default TM

if using the default ThreadTransactionManager (see news for 3.3a3
below). In 3.3, it’s intended that a single Transaction object is
used for exactly one transaction. So, unlike as in 3.2, when somtimes
Transaction objects were reused across transactions, but sometimes
weren’t, when you do Transaction.begin() in 3.3 a brand new
transaction object is created. That’s why this use is deprecated. Code
of the form:

>>> txn = transaction.get()
>>> ...
>>> txn.begin()
>>> ...
>>> txn.commit()

can’t work as intended in 3.3, because txn is no longer the current
Transaction object the instant txn.begin() returns.

BTrees

The BTrees __init__.py file is now just a comment. It had been trying
to set up support for (long gone) “int sets”, and to import an old
version of Zope’s Interface package, which doesn’t even ship with ZODB.
The latter in particular created problems, at least clashing with
PythonCAD’s Interface package.

POSException

Collector #1488 (TemporaryStorage – going backward in time). This
confusion was really due to that the detail on a ConflictError exception
didn’t make sense. It called the current revision “was”, and the old
revision “now”. The detail is much more informative now. For example,
if the exception said:

ConflictError: database conflict error (oid 0xcb22,
serial was 0x03441422948b4399, now 0x034414228c3728d5)

before, it now says:

ConflictError: database conflict error (oid 0xcb22,
serial this txn started with 0x034414228c3728d5 2002-04-14 20:50:32.863000,
serial currently committed 0x03441422948b4399 2002-04-14 20:50:34.815000)

ConflictError

The undocumented get_old_serial() and get_new_serial() methods
were swapped (the first returned the new serial, and the second returned
the old serial).

Tools

FileStorage.FileIterator was confused about how to read a transaction’s
user and description fields, which caused several tools to display
binary gibberish for these values.

ZODB.utils.oid_repr() changed to add a leading “0x”, and to strip
leading zeroes. This is used, e.g., in the detail of a POSKeyError
exception, to identify the missing oid. Before, the output was ambiguous.
For example, oid 17 was displayed as 0000000000000011. As a Python
integer, that’s octal 9. Or was it meant to be decimal 11? Or was it
meant to be hex? Now it displays as 0x11.

fsrefs.py:

When run with -v, produced tracebacks for objects whose creation was
merely undone. This was confusing. Tracebacks are now produced only
if there’s “a real” problem loading an oid.

If the current revision of object O refers to an object P whose
creation has been undone, this is now identified as a distinct case.

Captured and ignored most attempts to stop it via Ctrl+C. Repaired.

Now makes two passes, so that an accurate report can be given of all
invalid references.

analyze.py produced spurious “len of unsized object” messages when
finding a data record for an object uncreation or version abort. These
no longer appear.

fsdump.py’s get_pickle_metadata() function (which is used by several
tools) was confused about what to do when the ZODB pickle started with
a pickle GLOBAL opcode. It actually loaded the class then, which it
intends never to do, leading to stray messages on stdout when the class
wasn’t available, and leading to a strange return value even when it was
available (the repr of the type object was returned as “the module name”,
and an empty string was returned as “the class name”). This has been
repaired.

What’s new in ZODB3 3.3 beta 2

Release date: 13-Aug-2004

Transaction Managers

Zope3-dev Collector #139: Memory leak involving buckets and connections

The transaction manager internals effectively made every Connection
object immortal, except for those explicitly closed. Since typical
practice is not to close connections explicitly (and closing a DB
happens not to close the connections to it – although that may
change), this caused massive memory leaks when many connections were
opened. The transaction manager internals were reworked to use weak
references instead, so that connection memory (and other registered
synch objects) now get cleaned up when nothing other than the
transaction manager knows about them.

Storages

Collector #1327: FileStorage init confused by time travel

If the system clock “went backwards” a long time between the times a
FileStorage was closed and reopened, new transaction ids could be
smaller than transaction ids already in the storage, violating a
key invariant. Now transaction ids are guaranteed to be increasing
even when this happens. If time appears to have run backwards at all
when a FileStorage is opened, a new message saying so is logged at
warning level; if time appears to have run backwards at least 30
minutes, the message is logged at critical level (and you should
investigate to find and repair the true cause).

Tools

repozo.py: Thanks to a suggestion from Toby Dickenson, backups
(whether incremental or full) are first written to a temp file now,
which is fsync’ed at the end, and only after that succeeds is the
file renamed to YYYY-MM-DD-HH-MM-SS.ext form. In case of a system
crash during a repozo backup, this at least makes it much less
likely that a backup file with incomplete or incorrect data will be
left behind.

fsrefs.py: Fleshed out the module docstring, and repaired a bug
wherein spurious error msgs could be produced after reporting a
problem with an unloadable object.

Test suite

Collector #1397: testTimeStamp fails on FreeBSD

The BSD distributions are unique in that their mktime()
implementation usually ignores the input tm_isdst value. Test
checkFullTimeStamp() was sensitive to this platform quirk.

Reworked the way some of the ZEO tests use threads, so that unittest is
more likely to notice the real cause of a failure (which usually occurs in
a thread), and less likely to latch on to spurious problems resulting from
the real failure.

What’s new in ZODB3 3.3 beta 1

Release date: 07-Jun-2004

3.3b1 is the first ZODB release built using the new zpkg tools:

http://zope.org/Members/fdrake/zpkgtools/

This appears to have worked very well. The structure of the tarball
release differs from previous releases because of it, and the set of
installed files includes some that were not installed in previous
releases. That shouldn’t create problems, so let us know if it does!
We’ll fine-tune this for the next release.

BTrees

Fixed bug indexing BTreeItems objects with negative indexes. This
caused reverse iteration to return each item twice. Thanks to Casey
Duncan for the fix.

ZODB

Methods removed from the database (ZODB.DB.DB) class: cacheStatistics(),
cacheMeanAge(), cacheMeanDeac(), and cacheMeanDeal(). These were
undocumented, untested, and unused. The first always returned an empty
tuple, and the rest always returned None.

When trying to do recovery to a time earlier than that of the most recent
full backup, repozo.py failed to find the appropriate files, erroneously
claiming “No files in repository before <specified time>”. This has
been repaired.

Collector #1330: repozo.py -R can create corrupt .fs.
When looking for the backup files needed to recreate a Data.fs file,
repozo could (unintentionally) include its meta .dat files in the list,
or random files of any kind created by the user in the backup directory.
These would then get copied verbatim into the reconstructed file, filling
parts with junk. Repaired by filtering the file list to include only
files with the data extensions repozo.py creates (.fs, .fsz, .deltafs,
and .deltafsz). Thanks to James Henderson for the diagnosis.

fsrecover.py couldn’t work, because it referenced attributes that no
longer existed after the MVCC changes. Repaired that, and added new
tests to ensure it continues working.

Collector #1309: The reference counts reported by DB.cacheExtremeDetails()
for ghosts were one too small. Thanks to Dieter Maurer for the diagnosis.

Collector #1208: Infinite loop in cPickleCache.
If a persistent object had a __del__ method (probably not a good idea
regardless, but we don’t prevent it) that referenced an attribute of
self, the code to deactivate objects in the cache could get into an
infinite loop: ghostifying the object could lead to calling its __del__
method, the latter would load the object into cache again to
satsify the attribute reference, the cache would again decide that
the object should be ghostified, and so on. The infinite loop no longer
occurs, but note that objects of this kind still aren’t sensible (they’re
effectively immortal). Thanks to Toby Dickenson for suggesting a nice
cure.

What’s new in ZODB3 3.3 alpha 3

Release date: 16-Apr-2004

transaction

There is a new transaction package, which provides new interfaces for
application code and for the interaction between transactions and
resource managers.

The top-level transaction package has functions commit(), abort(),
get(), and begin(). They should be used instead of the magic
get_transaction() builtin, which will be deprecated. For example:

>>> get_transaction().commit()

should now be written as

>>> import transaction
>>> transaction.commit()

The new API provides explicit transaction manager objects. A transaction
manager (TM) is responsible for associating resource managers with a
“current” transaction. The default TM, implemented by class
ThreadedTransactionManager, assigns each thread its own current
transaction. This default TM is available as transaction.manager. The
TransactionManager class assigns all threads to the same transaction,
and is an explicit replacement for the Connection.setLocalTransaction()
method:

A transaction manager instance can be passed as the transaction_manager
argument to DB.open(). If you do, the connection will use the specified
transaction manager instead of the default TM. The current transaction is
obtained by calling get() on a TM. For example:

>>> tm = transaction.TransactionManager()
>>> cn = db.open(transaction_manager=tm)
[...]
>>> tm.get().commit()

The setLocalTransaction() and getTransaction() methods of
Connection are deprecated. Use an explicit TM passed via
transaction_manager= to DB.open() instead. The
setLocalTransaction() method still works, but it returns a TM instead of
a Transaction.

A TM creates Transaction objects, which are used for exactly one
transaction. Transaction objects still have commit(), abort(),
note(), setUser(), and setExtendedInfo() methods.

Resource managers, e.g. Connection or RDB adapter, should use a
Transaction’s join() method instead of its register() method. An
object that calls join() manages its own resources. An object that
calls register() expects the TM to manage the objects.

Data managers written against the ZODB 4 transaction API are now
supported in ZODB 3.

persistent

A database can now contain persistent weak references. An object that
is only reachable from persistent weak references will be removed by
pack().

The persistence API now distinguishes between deactivation and
invalidation. This change is intended to support objects that can’t
be ghosts, like persistent classes. Deactivation occurs when a user
calls _p_deactivate() or when the cache evicts objects because it is
full. Invalidation occurs when a transaction updates the object. An
object that can’t be a ghost must load new state when it is
invalidated, but can ignore deactivation.

Persistent objects can implement a __getnewargs__() method that will
be used to provide arguments that should be passed to __new__() when
instances (including ghosts) are created. An object that implements
__getnewargs__() must be loaded from storage even to create a ghost.

There is new support for writing hooks like __getattr__ and
__getattribute__. The new hooks require that user code call special
persistence methods like _p_getattr() inside their hook. See the ZODB
programming guide for details.

The format of serialized persistent references has changed; that is,
the on-disk format for references has changed. The old format is
still supported, but earlier versions of ZODB will not be able to read
the new format.

ZODB

Closing a ZODB Connection while it is registered with a transaction,
e.g. has pending modifications, will raise a ConnnectionStateError.
Trying to load objects from or store objects to a closed connection
will also raise a ConnnectionStateError.

ZODB connections are synchronized on commit, even when they didn’t
modify objects. This feature assumes that the thread that opened the
connection is also the thread that uses it. If not, this feature will
cause problems. It can be disabled by passing synch=False to open().

New broken object support.

New add() method on Connection. User code should not assign the
_p_jar attribute of a new persistent object directly; a deprecation
warning is issued in this case.

Added a get() method to Connection as a preferred synonym for
__getitem__().

Several methods and/or specific optional arguments of methods have
been deprecated. The cache_deactivate_after argument used by DB() and
Connection() is deprecated. The DB methods getCacheDeactivateAfter(),
getVersionCacheDeactivateAfter(), setCacheDeactivateAfter(), and
setVersionCacheDeactivateAfter() are also deprecated.

The old-style undo() method was removed from the storage API, and
transactionalUndo() was renamed to undo().

The BDBStorages are no longer distributed with ZODB.

Fixed a serious bug in the new pack implementation. If pack was
called on the storage and passed a time earlier than a previous pack
time, data could be lost. In other words, if there are any two pack
calls, where the time argument passed to the second call was earlier
than the first call, data loss could occur. The bug was fixed by
causing the second call to raise a StorageError before performing any
work.

Fixed a rare bug in pack: if a pack started during a small window of
time near the end of a concurrent transaction’s commit, it was possible
for the pack attempt to raise a spurious

CorruptedError: … transaction with checkpoint flag set

exception. This did no damage to the database, or to the transaction
in progress, but no pack was performed then.

By popular demand, FileStorage.pack() no longer propagates a

FileStorageError: The database has already been packed to a
later time or no changes have been made since the last pack

exception. Instead that message is logged (at INFO level), and
the pack attempt simply returns then (no pack is performed).

ZEO

Fixed a bug that prevented the -m / –monitor argument from working.

zdaemon

Added a -m / –mask option that controls the umask of the subprocess.

zLOG

The zLOG backend has been removed. zLOG is now just a facade over the
standard Python logging package. Environment variables like
STUPID_LOG_FILE are no longer honored. To configure logging, you need
to follow the directions in the logging package documentation. The
process is currently more complicated than configured zLOG. See
test.py for an example.

ZConfig

This release of ZODB contains ZConfig 2.1.

More documentation has been written.

Make sure keys specified as attributes of the <default> element are
converted by the appropriate key type, and are re-checked for derived
sections.

Refactored the ZConfig.components.logger schema components so that a
schema can import just one of the “eventlog” or “logger” sections if
desired. This can be helpful to avoid naming conflicts.

Added a reopen() method to the logger factories.

Always use an absolute pathname when opening a FileHandler.

Miscellaneous

The layout of the ZODB source release has changed. All the source
code is contained in a src subdirectory. The primary motivation for
this change was to avoid confusion caused by installing ZODB and then
testing it interactively from the source directory; the interpreter
would find the uncompiled ZODB package in the source directory and
report an import error.

A reference-counting bug was fixed, in the logic calling a modified
persistent object’s data manager’s register() method. The primary symptom
was rare assertion failures in Python’s cyclic garbage collection.

The Connection class’s onCommitAction() method was removed.

Some of the doc strings in ZODB are now written for processing by
epydoc.

Several new test suites were written using doctest instead of the
standard unittest TestCase framework.

MappingStorage now implements getTid().

ThreadedAsync: Provide a way to shutdown the servers using an exit
status.

The mkzeoinstance script looks for a ZODB installation, not a Zope
installation. The received wisdom is that running a ZEO server
without access to the appserver code avoids many mysterious problems.

What’s new in ZODB3 3.3 alpha 2

Release date: 06-Jan-2004

This release contains a major overhaul of the persistence machinery,
including some user-visible changes. The Persistent base class is now
a new-style class instead of an ExtensionClass. The change enables
the use of features like properties with persistent object classes.
The Persistent base class is now contained in the persistent package.

The Persistence package is included for backwards compatibility. The
Persistence package is used by Zope to provide special
ExtensionClass-compatibility features like a non-C3 MRO and an __of__
method. ExtensionClass is not included with this release of ZODB3.
If you use the Persistence package, it will print a warning and import
Persistent from persistent.

In short, the new persistent package is recommended for non-Zope
applications. The following dotted class names are now preferred over
earlier names:

	persistent.Persistent

	persistent.list.PersistentList

	persistent.mapping.PersistentMapping

	persistent.TimeStamp

The in-memory, per-connection object cache (pickle cache) was changed
to participate in garbage collection. This should reduce the number
of memory leaks, although we are still tracking a few problems.

Multi-version concurrency control

ZODB now supports multi-version concurrency control (MVCC) for
storages that support multiple revisions. FileStorage and
BDBFullStorage both support MVCC. In short, MVCC means that read
conflicts should almost never occur. When an object is modified in
one transaction, other concurrent transactions read old revisions of
the object to preserve consistency. In earlier versions of ZODB, any
access of the modified object would raise a ReadConflictError.

The ZODB internals changed significantly to accommodate MVCC. There
are relatively few user visible changes, aside from the lack of read
conflicts. It is possible to disable the MVCC feature using the mvcc
keyword argument to the DB open() method, ex.: db.open(mvcc=False).

ZEO

Changed the ZEO server and control process to work with a single
configuration file; this is now the default way to configure these
processes. (It’s still possible to use separate configuration files.)
The ZEO configuration file can now include a “runner” section used by
the control process and ignored by the ZEO server process itself. If
present, the control process can use the same configuration file.

Fixed a performance problem in the logging code for the ZEO protocol.
The logging code could call repr() on arbitrarily long lists, even
though it only logged the first 60 bytes; worse, it called repr() even
if logging was currently disabled. Fixed to call repr() on individual
elements until the limit is reached.

Fixed a bug in zrpc (when using authentication) where the MAC header
wasn’t being read for large messages, generating errors while unpickling
commands sent over the wire. Also fixed the zeopasswd.py script, added
testcases and provided a more complete commandline interface.

Fixed a misuse of the _map variable in zrpc Connectio objects, which
are also asyncore.dispatcher objects. This allows ZEO to work with
CVS Python (2.4). _map is used to indicate whether the dispatcher
users the default socket_map or a custom socket_map. A recent change
to asyncore caused it to use _map in its add_channel() and
del_channel() methods, which presumes to be a bug fix (may get ported
to 2.3). That causes our dubious use of _map to be a problem, because
we also put the Connections in the global socket_map. The new
asyncore won’t remove it from the global socket map, because it has a
custom _map.

The prefix used for log messages from runzeo.py was changed from
RUNSVR to RUNZEO.

Miscellaneous

ReadConflictError objects now have an ignore() method. Normally, a
transaction that causes a read conflict can’t be committed. If the
exception is caught and its ignore() method called, the transaction
can be committed. Application code may need this in advanced
applications.

What’s new in ZODB3 3.3 alpha 1

Release date: 17-Jul-2003

New features of Persistence

The Persistent base class is a regular Python type implemented in C.
It should be possible to create new-style classes that inherit from
Persistent, and, thus, use all the new Python features introduced in
Python 2.2 and 2.3.

The __changed__() method on Persistent objects is no longer supported.

New features in BTrees

BTree, Bucket, TreeSet and Set objects are now iterable objects, playing
nicely with the iteration protocol introduced in Python 2.2, and can
be used in any context that accepts an iterable object. As for Python
dicts, the iterator constructed for BTrees and Buckets iterates
over the keys.

>>> from BTrees.OOBTree import OOBTree
>>> b = OOBTree({"one": 1, "two": 2, "three": 3, "four": 4})
>>> for key in b: # iterates over the keys
... print key
four
one
three
two
>>> list(enumerate(b))
[(0, 'four'), (1, 'one'), (2, 'three'), (3, 'two')]
>>> i = iter(b)
>>> i.next()
'four'
>>> i.next()
'one'
>>> i.next()
'three'
>>> i.next()
'two'
>>>

As for Python dicts in 2.2, BTree and Bucket objects have new
.iterkeys(), .iteritems(), and .itervalues() methods. TreeSet and Set
objects have a new .iterkeys() method. Unlike as for Python dicts,
these new methods accept optional min and max arguments to effect
range searches. While Bucket.keys() produces a list, Bucket.iterkeys()
produces an iterator, and similarly for Bucket values() versus
itervalues(), Bucket items() versus iteritems(), and Set keys() versus
iterkeys(). The iter{keys,values,items} methods of BTrees and the
iterkeys() method of Treesets also produce iterators, while their
keys() (etc) methods continue to produce BTreeItems objects (a form of
“lazy” iterator that predates Python 2.2’s iteration protocol).

>>> sum(b.itervalues())
10
>>> zip(b.itervalues(), b.iterkeys())
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
>>>

BTree, Bucket, TreeSet and Set objects also implement the __contains__
method new in Python 2.2, which means that testing for key membership
can be done directly now via the “in” and “not in” operators:

>>> "won" in b
False
>>> "won" not in b
True
>>> "one" in b
True
>>>

All old and new range-search methods now accept keyword arguments,
and new optional excludemin and excludemax keyword arguments. The
new keyword arguments allow doing a range search that’s exclusive
at one or both ends (doesn’t include min, and/or doesn’t include
max).

>>> list(b.keys())
['four', 'one', 'three', 'two']
>>> list(b.keys(max='three'))
['four', 'one', 'three']
>>> list(b.keys(max='three', excludemax=True))
['four', 'one']
>>>

Other improvements

The exceptions generated by write conflicts now contain the name of
the conflicted object’s class. This feature requires support for the
storage. All the standard storages support it.

What’s new in ZODB3 3.2

Release date: 08-Oct-2003

Nothing has changed since release candidate 1.

What’s new in ZODB3 3.2 release candidate 1

Release date: 01-Oct-2003

Added a summary to the Doc directory. There are several new documents
in the 3.2 release, including “Using zdctl and zdrun to manage server
processes” and “Running a ZEO Server HOWTO.”

Fixed ZEO’s protocol negotiation mechanism so that a client ZODB 3.1
can talk to a ZODB 3.2 server.

Fixed a memory leak in the ZEO server. The server was leaking a few
KB of memory per connection.

Fixed a memory leak in the ZODB object cache (cPickleCache). The
cache did not release two references to its Connection, causing a
large cycle of objects to leak when a database was closed.

Fixed a bug in the ZEO code that caused it to leak socket objects on
Windows. Specifically, fix the trigger mechanism so that both sockets
created for a trigger are closed.

Fixed a bug in the ZEO storage server that caused it to leave temp
files behind. The CommitLog class contains a temp file, but it was
not closing the file.

Changed the order of setuid() and setgid() calls in zdrun, so that
setgid() is called first.

Added a timeout to the ZEO test suite that prevents hangs. The test
suite creates ZEO servers with randomly assigned ports. If the port
happens to be in use, the test suite would hang because the ZEO client
would never stop trying to connect. The fix will cause the test to
fail after a minute, but should prevent the test runner from hanging.

The logging package was updated to include the latest version of the
logging package from Python CVS. Note that this package is only
installed for Python 2.2. In later versions of Python, it is
available in the Python standard library.

The ZEO1 directory was removed from the source distribution. ZEO1 is
not supported, and we never intended to include it in the release.

What’s new in ZODB3 3.2 beta 3

Release date: 23-Sep-2003

Note: The changes listed for this release include changes also made in
ZODB 3.1.x releases and ported to the 3.2 release.

This version of ZODB 3.2 is not compatible with Python 2.1. Early
versions were explicitly designed to be compatible with Zope 2.6.
That plan has been dropped, because Zope 2.7 is already in beta
release.

Several of the classes in ZEO and ZODB now inherit from object, making
them new-style classes. The primary motivation for the change was to
make it easier to debug memory leaks. We don’t expect any behavior to
change as a result.

A new feature to allow removal of connection pools for versions was
ported from Zope 2.6. This feature is needed by Zope to avoid denial
of service attacks that allow a client to create an arbitrary number
of version pools.

Fixed several critical ZEO bugs.

	If several client transactions were blocked waiting for the storage
and one of the blocked clients disconnected, the server would
attempt to restart one of the other waiting clients. Since the
disconnected client did not have the storage lock, this could lead
to deadlock. It could also cause the assertion “self._client is
None” to fail.

	If a storage server fails or times out between the vote and the
finish, the ZEO cache could get populated with objects that didn’t
make it to the storage server.

	If a client loses its connection to the server near the end of a
transaction, it is now guaranteed to get a ClientDisconnected error
even if it reconnects before the transaction finishes. This is
necessary because the server will always abort the transaction.
In some cases, the client would never see an error for the aborted
transaction.

	In tpc_finish(), reordered the calls so that the server’s tpc_finish()
is called (and must succeed) before we update the ZEO client cache.

	The storage name is now prepended to the sort key, to ensure a
unique global sort order if storages are named uniquely. This
can prevent deadlock in some unusual cases.

Fixed several serious flaws in the implementation of the ZEO
authentication protocol.

	The smac layer would accept a message without a MAC even after the
session key was established.

	The client never initialized its session key, so it never checked
incoming messages or created MACs for outgoing messags.

	The smac layer used a single HMAC instance for sending and receiving
messages. This approach could only work if client and server were
guaranteed to process all messages in the same total order, which
could only happen in simple scenarios like unit tests.

Fixed a bug in ExtensionClass when comparing ExtensionClass instances.
The code could raise RuntimeWarning under Python 2.3, and produce
incorrect results on 64-bit platforms.

Fixed bug in BDBStorage that could lead to DBRunRecoveryErrors when a
transaction was aborted after performing operations like commit
version or undo that create new references to existing pickles.

Fixed a bug in Connection.py that caused it to fail with an
AttributeError if close() was called after the database was closed.

The test suite leaves fewer log files behind, although it still leaves
a lot of junk. The test.py script puts each tests temp files in a
separate directory, so it is easier to see which tests are causing
problems. Unfortunately, it is still to tedious to figure out why the
identified tests are leaving files behind.

This release contains the latest and greatest version of the
BDBStorage. This storage has still not seen testing in a production
environment, but it represents the current best design and most recent
code culled from various branches where development has occurred.

The Tools directory contains a number of small improvements, a few new
tools, and README.txt that catalogs the tools. Many of the tools are
installed by setup.py; those scripts will now have a #! line set
automatically on Unix.

Fixed bugs in Tools/repozo.py, including a timing-dependent one that
could cause the following invocation of repozo to do a full backup when
an incremental backup would have sufficed.

A pair of new scripts from Jim Fulton can be used to synthesize
workloads and measure ZEO performance: see zodbload.py and
zeoserverlog.py in the Tools directory. Note that these require
Zope.

Tools/checkbtrees.py was strengthened in two ways:

	In addition to running the _check() method on each BTree B found,
BTrees.check.check(B) is also run. The check() function was written
after checkbtrees.py, and identifies kinds of damage B._check()
cannot find.

	Cycles in the object graph no longer lead to unbounded output.
Note that preventing this requires remembering the oid of each
persistent object found, which increases the memory needed by the
script.

What’s new in ZODB3 3.2 beta 2

Release date: 16-Jun-2003

Fixed critical race conditions in ZEO’s cache consistency code that
could cause invalidations to be lost or stale data to be written to
the cache. These bugs can lead to data loss or data corruption.
These bugs are relatively unlikely to be provoked in sites with few
conflicts, but the possibility of failure existed any time an object
was loaded and stored concurrently.

Fixed a bug in conflict resolution that failed to ghostify an object
if it was involved in a conflict. (This code may be redundant, but it
has been fixed regardless.)

The ZEO server was fixed so that it does not perform any I/O until all
of a transactions’ invalidations are queued. If it performs I/O in the
middle of sending invalidations, it would be possible to overlap a
load from a client with the invalidation being sent to it.

The ZEO cache now handles invalidations atomically. This is the same
sort of bug that is described in the 3.1.2b1 section below, but it
affects the ZEO cache.

Fixed several serious bugs in fsrecover that caused it to fail
catastrophically in certain cases because it thought it had found a
checkpoint (status “c”) record when it was in the middle of the file.

Two new features snuck into this beta release.

The ZODB.transact module provides a helper function that converts a
regular function or method into a transactional one.

The ZEO client cache now supports Adaptable Persistence (APE). The
cache used to expect that all OIDs were eight bytes long.

What’s new in ZODB3 3.2 beta 1

Release date: 30-May-2003

ZODB

Invalidations are now processed atomically. Each transaction will see
all the changes caused by an earlier transaction or none of them.
Before this patch, it was possible for a transaction to see invalid
data because it saw only a subset of the invalidations. This is the
most likely cause of reported BTrees corruption, where keys were
stored in the wrong bucket. When a BTree bucket splits, the bucket
and the bucket’s parent are both modified. If a transaction sees the
invalidation for the bucket but not the parent, the BTree in memory
will be internally inconsistent and keys can be put in the wrong
bucket. The atomic invalidation fix prevents this problem.

A number of minor reference count fixes in the object cache were
fixed. That’s the cPickleCache.c file.

It was possible for a transaction that failed in tpc_finish() to lose
the traceback that caused the failure. The transaction code was fixed
to report the original error as well as any errors that occur while
trying to recover from the original error.

The “other” argument to copyTransactionsFrom() only needs to have an
.iterator() method. For convenience, change FileStorage’s and
BDBFullStorage’s iterator to have this method, which just returns
self.

Mount points are now visible from mounted objects.

Fixed memory leak involving database connections and caches. When a
connection or database was closed, the cache and database leaked,
because of a circular reference involving the cache. Fixed the cache
to explicitly clear out its contents when its connection is closed.

The ZODB cache has fewer methods. It used to expose methods that
could mutate the dictionary, which allowed users to violate internal
invariants.

ZConfig

It is now possible to configure ZODB databases and storages and ZEO
servers using ZConfig.

ZEO & zdaemon

ZEO now supports authenticated client connections. The default
authentication protocol uses a hash-based challenge-response protocol
to prove identity and establish a session key for message
authentication. The architecture is pluggable to allow third-parties
to developer better authentication protocols.

There is a new HOWTO for running a ZEO server. The draft in this
release is incomplete, but provides more guidance than previous
releases. See the file Doc/ZEO/howto.txt.

The ZEO storage server’s transaction timeout feature was refactored
and made slightly more rebust.

A new ZEO utility script, ZEO/mkzeoinst.py, was added. This creates a
standard directory structure and writes a configuration file with
mostly default values, and a bootstrap script that can be used to
manage and monitor the server using zdctl.py (see below).

Much work was done to improve zdaemon’s zdctl.py and zdrun.py scripts.
(In the alpha 1 release, zdrun.py was called zdaemon.py, but
installing it in <prefix>/bin caused much breakage due to the name
conflict with the zdaemon package.) Together with the new
mkzeoinst.py script, this makes controlling a ZEO server a breeze.

A ZEO client will not read from its cache during cache verification.
This fix was necessary to prevent the client from reading inconsistent
data.

The isReadOnly() method of a ZEO client was fixed to return the false
when the client is connected to a read-only fallback server.

The sync() method of ClientStorage and the pending() method of a zrpc
connection now do both input and output.

The short_repr() function used to generate log messages was fixed so
that it does not blow up creating a repr of very long tuples.

Storages

FileStorage has a new pack() implementation that fixes several
reported problems that could lead to data loss.

Two small bugs were fixed in DemoStorage. undoLog() did not handle
its arguments correctly and pack() could accidentally delete objects
created in versions.

Fixed trivial bug in fsrecover that prevented it from working at all.

FileStorage will use fsync() on Windows starting with Python 2.2.3.

FileStorage’s commit version was fixed. It used to stop after the
first object, leaving all the other objects in the version.

BTrees

Trying to store an object of a non-integer type into an IIBTree
or OIBTree could leave the bucket in a variety of insane states. For
example, trying

b[obj] = “I’m a string, not an integer”

where b is an OIBTree. This manifested as a refcount leak in the test
suite, but could have been much worse (most likely in real life is that
a seemingly arbitrary existing key would “go missing”).

When deleting the first child of a BTree node with more than one
child, a reference to the second child leaked. This could cause
the entire bucket chain to leak (not be collected as garbage
despite not being referenced anymore).

Other minor BTree leak scenarios were also fixed.

Tools

New tool zeoqueue.py for parsing ZEO log files, looking for blocked
transactions.

New tool repozo.py (originally by Anthony Baxter) for performing
incremental backups of Data.fs files.

The fsrecover.py script now does a better job of recovering from
errors the occur in the middle of a transaction record. Fixed several
bugs that caused partial or total failures in earlier versions.

What’s new in ZODB3 3.2 alpha 1

Release date: 17-Jan-2003

Most of the changes in this release are performance and stability
improvements to ZEO. A major packaging change is that there won’t be
a separate ZEO release. The new ZConfig is a noteworthy addtion (see
below).

ZODB

An experimental new transaction API was added. The Connection class
has a new method, setLocalTransaction(). ZODB applications can call
this method to bind transactions to connections rather than threads.
This is especially useful for GUI applications, which often have only
one thread but multiple independent activities within that thread
(generally one per window). Thanks to Christian Reis for championing
this feature.

Applications that take advantage of this feature should not use the
get_transaction() function. Until now, ZODB itself sometimes assumed
get_transaction() was the only way to get the transaction. Minor
corrections have been added. The ZODB test suite, on the other hand,
can continue to use get_transaction(), since it is free to assume that
transactions are bound to threads.

ZEO

There is a new recommended script for starting a storage server. We
recommend using ZEO/runzeo.py instead of ZEO/start.py. The start.py
script is still available in this release, but it will no longer be
maintained and will eventually be removed.

There is a new zdaemon implementation. This version is a separate
script that runs an arbitrary daemon. To run the ZEO server as a
daemon, you would run “zdrun.py runzeo.py”. There is also a simple
shell, zdctl.py, that can be used to manage a daemon. Try
“zdctl.py -p runzeo.py”.

There is a new version of the ZEO protocol in this release and a first
stab at protocol negotiation. (It’s a first stab because the protocol
checking supporting in ZODB 3.1 was too primitive to support anything
better.) A ZODB 3.2 ZEO client can talk to an old server, but a ZODB
3.2 server can’t talk to an old client. It’s safe to upgrade all the
clients first and upgrade the server last. The ZEO client cache
format changed, so you’ll need to delete persistent caches before
restarting clients.

The ZEO cache verification protocol was revised to require many fewer
messages in cases where a client or server restarts quickly.

The performance of full cache verification has improved dramatically.
Measurements from Jim were somewhere in 2x-5x. The
implementation was fixed to use the very-fast getSerial() method on
the storage instead of the comparatively slow load().

The ZEO server has an optional timeout feature that will abort a
connection that does not commit within a certain amount of time. The
timeout works by closing the socket the client is using, causing both
client and server to abort the transaction and continue. This is a
drastic step, but can be useful to prevent a hung client or other bug
from blocking a server indefinitely.

A bug was fixed in the ZEO protocol that allowed clients to read stale
cache data while cache verification was being performed. The fixed
version prevents the client from using the storage until after
verification completes.

The ZEO server has an experimental monitoring interface that reports
usage statistics for the storage server including number of connected
clients and number of transactions active and committed. It can be
enabled by passing the -m flag to runsvr.py.

The ZEO ClientStorage no longer supports the environment variables
CLIENT_HOME, INSTANCE_HOME, or ZEO_CLIENT.

The ZEO1 package is still included with this release, but there is no
longer an option to install it.

BTrees

The BTrees package now has a check module that inspects a BTree to
check internal invariants. Bugs in older versions of the code code
leave a BTree in an inconsistent state. Calling BTrees.check.check()
on a BTree object should verify its consistency. (See the NEWS
section for 3.1 beta 1 below to for the old BTrees bugs.)

Fixed a rare conflict resolution problem in the BTrees that could
cause an segfault when the conflict resolution resulted in any
empty bucket.

Installation

The distutils setup now installs several Python scripts. The
runzeo.py and zdrun.py scripts mentioned above and several fsXXX.py
scripts from the Tools directory.

The test.py script does not run all the ZEO tests by default, because
the ZEO tests take a long time to run. Use –all to run all the
tests. Otherwise a subset of the tests, mostly using MappingStorage,
are run.

Storages

There are two new storages based on Sleepycat’s BerkeleyDB in the
BDBStorage package. Barry will have to write more here, because I
don’t know how different they are from the old bsddb3Storage
storages. See Doc/BDBStorage.txt for more information.

It now takes less time to open an existing FileStorage. The
FileStorage uses a BTree-based index that is faster to pickle and
unpickle. It also saves the index periodically so that subsequent
opens will go fast even if the storage was not closed cleanly.

Misc

The new ZConfig package, which will be used by Zope and ZODB, is
included. ZConfig provides a configuration syntax, similar to
Apache’s syntax. The package can be used to configure the ZEO server
and ZODB databases. See the module ZODB.config for functions to open
the database from configuration. See ZConfig/doc for more info.

The zLOG package now uses the logging package by Vinay Sajip, which
will be included in Python 2.3.

The Sync extension was removed from ExtensionClass, because it was not
used by ZODB.

What’s new in ZODB3 3.1.4?

Release date: 11-Sep-2003

A new feature to allow removal of connection pools for versions was
ported from Zope 2.6. This feature is needed by Zope to avoid denial
of service attacks that allow a client to create an arbitrary number
of version pools.

A pair of new scripts from Jim Fulton can be used to synthesize
workloads and measure ZEO performance: see zodbload.py and
zeoserverlog.py in the Tools directory. Note that these require
Zope.

Tools/checkbtrees.py was strengthened in two ways:

	In addition to running the _check() method on each BTree B found,
BTrees.check.check(B) is also run. The check() function was written
after checkbtrees.py, and identifies kinds of damage B._check()
cannot find.

	Cycles in the object graph no longer lead to unbounded output.
Note that preventing this requires remembering the oid of each
persistent object found, which increases the memory needed by the
script.

What’s new in ZODB3 3.1.3?

Release date: 18-Aug-2003

Fixed several critical ZEO bugs.

	If a storage server fails or times out between the vote and the
finish, the ZEO cache could get populated with objects that didn’t
make it to the storage server.

	If a client loses its connection to the server near the end of a
transaction, it is now guaranteed to get a ClientDisconnected error
even if it reconnects before the transaction finishes. This is
necessary because the server will always abort the transaction.
In some cases, the client would never see an error for the aborted
transaction.

	In tpc_finish(), reordered the calls so that the server’s tpc_finish()
is called (and must succeed) before we update the ZEO client cache.

	The storage name is now prepended to the sort key, to ensure a
unique global sort order if storages are named uniquely. This
can prevent deadlock in some unusual cases.

A variety of fixes and improvements to Berkeley storage (aka BDBStorage)
were back-ported from ZODB 4. This release now contains the most
current version of the Berkeley storage code. Many tests have been
back-ported, but not all.

Modified the Windows tests to wait longer at the end of ZEO tests for
the server to shut down. Before Python 2.3, there is no waitpid() on
Windows, and, thus, no way to know if the server has shut down. The
change makes the Windows ZEO tests much less likely to fail or hang,
at the cost of increasing the time needed to run the tests.

Fixed a bug in ExtensionClass when comparing ExtensionClass instances.
The code could raise RuntimeWarning under Python 2.3, and produce
incorrect results on 64-bit platforms.

Fixed bugs in Tools/repozo.py, including a timing-dependent one that
could cause the following invocation of repozo to do a full backup when
an incremental backup would have sufficed.

Added Tools/README.txt that explains what each of the scripts in the
Tools directory does.

There were many small changes and improvements to the test suite.

What’s new in ZODB3 3.1.2 final?

Fixed bug in FileStorage pack that caused it to fail if it encountered
an old undo record (status “u”).

Fixed several bugs in FileStorage pack that could cause OverflowErrors
for storages > 2 GB.

Fixed memory leak in TimeStamp.laterThan() that only occurred when it
had to create a new TimeStamp.

Fixed two BTree bugs that were fixed on the head a while ago:

	bug in fsBTree that would cause byValue searches to end early.
(fsBTrees are never used this way, but it was still a bug.)

	bug that lead to segfault if BTree was mutated via deletion
while it was being iterated over.

What’s new in ZODB3 3.1.2 beta 2?

Fixed critical race conditions in ZEO’s cache consistency code that
could cause invalidations to be lost or stale data to be written to
the cache. These bugs can lead to data loss or data corruption.
These bugs are relatively unlikely to be provoked in sites with few
conflicts, but the possibility of failure existed any time an object
was loaded and stored concurrently.

Fixed a bug in conflict resolution that failed to ghostify an object
if it was involved in a conflict. (This code may be redundant, but it
has been fixed regardless.)

The ZEO server was fixed so that it does not perform any I/O until all
of a transactions’ invalidations are queued. If it performs I/O in the
middle of sending invalidations, it would be possible to overlap a
load from a client with the invalidation being sent to it.

The ZEO cache now handles invalidations atomically. This is the same
sort of bug that is described in the 3.1.2b1 section below, but it
affects the ZEO cache.

Fixed several serious bugs in fsrecover that caused it to fail
catastrophically in certain cases because it thought it had found a
checkpoint (status “c”) record when it was in the middle of the file.

What’s new in ZODB3 3.1.2 beta 1?

ZODB

Invalidations are now processed atomically. Each transaction will see
all the changes caused by an earlier transaction or none of them.
Before this patch, it was possible for a transaction to see invalid
data because it saw only a subset of the invalidations. This is the
most likely cause of reported BTrees corruption, where keys were
stored in the wrong bucket. When a BTree bucket splits, the bucket
and the bucket’s parent are both modified. If a transaction sees the
invalidation for the bucket but not the parent, the BTree in memory
will be internally inconsistent and keys can be put in the wrong
bucket. The atomic invalidation fix prevents this problem.

A number of minor reference count fixes in the object cache were
fixed. That’s the cPickleCache.c file.

It was possible for a transaction that failed in tpc_finish() to lose
the traceback that caused the failure. The transaction code was fixed
to report the original error as well as any errors that occur while
trying to recover from the original error.

ZEO

A ZEO client will not read from its cache during cache verification.
This fix was necessary to prevent the client from reading inconsistent
data.

The isReadOnly() method of a ZEO client was fixed to return the false
when the client is connected to a read-only fallback server.

The sync() method of ClientStorage and the pending() method of a zrpc
connection now do both input and output.

The short_repr() function used to generate log messages was fixed so
that it does not blow up creating a repr of very long tuples.

Storages

FileStorage has a new pack() implementation that fixes several
reported problems that could lead to data loss.

Two small bugs were fixed in DemoStorage. undoLog() did not handle
its arguments correctly and pack() could accidentally delete objects
created in versions.

Fixed trivial bug in fsrecover that prevented it from working at all.

FileStorage will use fsync() on Windows starting with Python 2.2.3.

FileStorage’s commit version was fixed. It used to stop after the
first object, leaving all the other objects in the version.

BTrees

Trying to store an object of a non-integer type into an IIBTree
or OIBTree could leave the bucket in a variety of insane states. For
example, trying

b[obj] = “I’m a string, not an integer”

where b is an OIBTree. This manifested as a refcount leak in the test
suite, but could have been much worse (most likely in real life is that
a seemingly arbitrary existing key would “go missing”).

When deleting the first child of a BTree node with more than one
child, a reference to the second child leaked. This could cause
the entire bucket chain to leak (not be collected as garbage
despite not being referenced anymore).

Other minor BTree leak scenarios were also fixed.

Other

Comparing a Missing.Value object to a C type that provide its own
comparison operation could lead to a segfault when the Missing.Value
was on the right-hand side of the comparison operator. The Missing
class was fixed so that its coercion and comparison operations are
safe.

Tools

Four tools are now installed by setup.py: fsdump.py, fstest.py,
repozo.py, and zeopack.py.

What’s new in ZODB3 3.1.1 final?

Release date: 11-Feb-2003

Tools

Updated repozo.py tool

What’s new in ZODB3 3.1.1 beta 2?

Release date: 03-Feb-2003

The Transaction “hosed” feature is disabled in this release. If a
transaction fails during the tpc_finish() it is not possible, in
general, to know whether the storage is in a consistent state. For
example, a ZEO server may commit the data and then fail before sending
confirmation of the commit to the client. If multiple storages are
involved in a transaction, the problem is exacerbated: One storage may
commit the data while another fails to commit. In previous versions
of ZODB, the database would set a global “hosed” flag that prevented
any other transaction from committing until an administrator could
check the status of the various failed storages and ensure that the
database is in a consistent state. This approach favors data
consistency over availability. The new approach is to log a panic but
continue. In practice, availability seems to be more important than
consistency. The failure mode is exceedingly rare in either case.

The BTrees-based fsIndex for FileStorage is enabled. This version of
the index is faster to load and store via pickle and uses less memory
to store keys. We had intended to enable this feature in an earlier
release, but failed to actually do it; thus, it’s getting enabled as a
bug fix now.

Two rare bugs were fixed in BTrees conflict resolution. The most
probable symptom of the bug would have been a segfault. The bugs
were found via synthetic stress tests rather than bug reports.

A value-based consistency checker for BTrees was added. See the
module BTrees.check for the checker and other utilities for working
with BTrees.

A new script called repozo.py was added. This script, originally
written by Anthony Baxter, provides an incremental backup scheme for
FileStorage based storages.

zeopack.py has been fixed to use a read-only connection.

Various small autopack-related race conditions have been fixed in the
Berkeley storage implementations. There have been some table changes
to the Berkeley storages so any storage you created in 3.1.1b1 may not
work. Part of these changes was to add a storage version number to
the schema so these types of incompatible changes can be avoided in
the future.

Removed the chance of bogus warnings in the FileStorage iterator.

ZEO

The ZEO version number was bumped to 2.0.2 on account of the following
minor feature additions.

The performance of full cache verification has improved dramatically.
Measurements from Jim were somewhere in 2x-5x. The
implementation was fixed to use the very-fast getSerial() method on
the storage instead of the comparatively slow load().

The ZEO server has an optional timeout feature that will abort a
connection that does not commit within a certain amount of time. The
timeout works by closing the socket the client is using, causing both
client and server to abort the transaction and continue. This is a
drastic step, but can be useful to prevent a hung client or other bug
from blocking a server indefinitely.

If a client was disconnected during a transaction, the tpc_abort()
call did not properly reset the internal state about the transaction.
The bug caused the next transaction to fail in its tpc_finish().
Also, any ClientDisconnected exceptions raised during tpc_abort() are
ignored.

ZEO logging has been improved by adding more logging for important
events, and changing the logging level for existing messages to a more
appropriate level (usually lower).

What’s new in ZODB3 3.1.1 beta 1?

Release date: 10-Dev-2002

It was possible for earlier versions of ZODB to deadlock when using
multiple storages. If multiple transactions committed concurrently
and both transactions involved two or more shared storages, deadlock
was possible. This problem has been fixed by introducing a sortKey()
method to the transaction and storage APIs that is used to define an
ordering on transaction participants. This solution will prevent
deadlocks provided that all transaction participants that use locks
define a valid sortKey() method. A warning is raised if a participant
does not define sortKey(). For backwards compatibility, BaseStorage
provides a sortKey() that uses __name__.

Added code to ThreadedAsync/LoopCallback.py to work around a bug in
asyncore.py: a handled signal can cause unwanted reads to happen.

A bug in FileStorage related to object uncreation was fixed. If an
a transaction that created an object was undone, FileStorage could
write a bogus data record header that could lead to strange errors if
the object was loaded. An attempt to load an uncreated object now
raises KeyError, as expected.

The restore() implementation in FileStorage wrote incorrect
backpointers for a few corner cases involving versions and undo. It
also failed if the backpointer pointed to a record that was before the
pack time. These specific bugs have been fixed and new test cases
were added to cover them.

A bug was fixed in conflict resolution that raised a NameError when a
class involved in a conflict could not be loaded. The bug did not
affect correctness, but prevent ZODB from caching the fact that the
class was unloadable. A related bug prevented spurious
AttributeErrors when a class could not be loaded. It was also fixed.

The script Tools/zeopack.py was fixed to work with ZEO 2. It was
untested and had two silly bugs.

Some C extensions included standard header files before including
Python.h, which is not allowed. They now include Python.h first,
which eliminates compiler warnings in certain configurations.

The BerkeleyDB based storages have been merged from the trunk,
providing a much more robust version of the storages. They are not
backwards compatible with the old storages, but the decision was made
to update them in this micro release because the old storages did not
work for all practical purposes. For details, see Doc/BDBStorage.txt.

What’s new in ZODB3 3.1 final?

Release date: 28-Oct-2002

If an error occurs during conflict resolution, the store will silently
catch the error, log it, and continue as if the conflict was
unresolvable. ZODB used to behave this way, and the change to catch
only ConflictError was causing problems in deployed systems. There
are a lot of legitimate errors that should be caught, but it’s too
close to the final release to make the substantial changes needed to
correct this.

What’s new in ZODB3 3.1 beta 3?

Release date: 21-Oct-2002

A small extension was made to the iterator protocol. The Record
objects, which are returned by the per-transaction iterators, contain
a new data_txn attribute. It is None, unless the data contained in
the record is a logical copy of an earlier transaction’s data. For
example, when transactional undo modifies an object, it creates a
logical copy of the earlier transaction’s data. Note that this
provide a stronger statement about consistency than whether the data
in two records is the same; it’s possible for two different updates to
an object to coincidentally have the same data.

The restore() method was extended to take the data_txn attribute
mentioned above as an argument. FileStorage uses the new argument to
write a backpointer if possible.

A few bugs were fixed.

The setattr slot of the cPersistence C API was being initialized to
NULL. The proper initialization was restored, preventing crashes in
some applications with C extensions that used persistence.

The return value of TimeStamp’s __cmp__ method was clipped to return
only 1, 0, -1.

The restore() method was fixed to write a valid backpointer if the
update being restored is in a version.

Several bugs and improvements were made to zdaemon, which can be used
to run the ZEO server. The parent now forwards signals to the child
as intended. Pidfile handling was improved and the trailing newline
was omitted.

What’s new in ZODB3 3.1 beta 2?

Release date: 4-Oct-2002

A few bugs have been fixed, some that were found with the help of
Neal Norwitz’s PyChecker.

The zeoup.py tool has been fixed to allow connecting to a read-only
storage, when the –nowrite option is given.

Casey Duncan fixed a few bugs in the recent changes to undoLog().

The fstest.py script no longer checks that each object modified in a
transaction has a serial number that matches the transaction id.
This invariant is no longer maintained; several new features in the
3.1 release depend on it.

The ZopeUndo package was added. If ZODB3 is being used to run a ZEO
server that will be used with Zope, it is usually best if the server
and the Zope client don’t share any software. The Zope undo
framework, however, requires that a Prefix object be passed between
client and server. To support this use, ZopeUndo was created to hold
the Prefix object.

Many bugs were fixed in ZEO, and a couple of features added. See
ZEO-NEWS.txt for details.

The ZODB guide included in the Doc directory has been updated. It is
still incomplete, but most of the references to old ZODB packages have
been removed. There is a new section that briefly explains how to use
BTrees.

The zeoup.py tool connects using a read-only connection when –nowrite
is specifified. This feature is useful for checking on read-only ZEO
servers.

What’s new in ZODB3 3.1 beta 1?

Release date: 12-Sep-2002

We’ve changed the name and version number of the project, but it’s
still the same old ZODB. There have been a lot of changes since the
last release.

New ZODB cache

Toby Dickenson implemented a new Connection cache for ZODB. The cache
is responsible for pointer swizzling (translating between oids and
Python objects) and for keeping recently used objects in memory. The
new cache is a big improvement over the old cache. It strictly honors
its size limit, where size is specified in number of objects, and it
evicts objects in least recently used (LRU) order.

Users should take care when setting the cache size, which has a
default value of 400 objects. The old version of the cache often held
many more objects than its specified size. An application may not
perform as well with a small cache size, because the cache no longer
exceeds the limit.

Storages

The index used by FileStorage was reimplemented using a custom BTrees
object. The index maps oids to file offsets, and is kept in memory at
all times. The new index uses about 1/4 the memory of the old,
dictionary-based index. See the module ZODB.fsIndex for details.

A security flaw was corrected in transactionalUndo(). The transaction
ids returned by undoLog() and used for transactionalUndo() contained a
file offset. An attacker could construct a pickle with a bogus
transaction record in its binary data, deduce the position of the
pickle in the file from the undo log, then submit an undo with a bogus
file position that caused the pickle to get written as a regular data
record. The implementation was fixed so that file offsets are not
included in the transaction ids.

Several storages now have an explicit read-only mode. For example,
passing the keyword argument read_only=1 to FileStorage will make it
read-only. If a write operation is performed on a read-only storage,
a ReadOnlyError will be raised.

The storage API was extended with new methods that support the Zope
Replication Service (ZRS), a proprietary Zope Corp product. We expect
these methods to be generally useful. The methods are:

	restore(oid, serialno, data, version, transaction)

Perform a store without doing consistency checks. A client can
use this method to provide a new current revision of an object.
The serialno argument is the new serialno to use for the
object, not the serialno of the previous revision.

	lastTransaction()

Returns the transaction id of the last committed transaction.

	lastSerial(oid)

Return the current serialno for oid or None.

	iterator(start=None, stop=None)

The iterator method isn’t new, but the optional start and
stop arguments are. These arguments can be used to specify
the range of the iterator – an inclusive range [start, stop].

FileStorage is now more cautious about creating a new file when it
believes a file does not exist. This change is a workaround for bug
in Python versions upto and including 2.1.3. If the interpreter was
builtin without large file support but the platform had it,
os.path.exists() would return false for large files. The fix is to
try to open the file first, and decide whether to create a new file
based on errno.

The undoLog() and undoInfo() methods of FileStorage can run
concurrently with other methods. The internal storage lock is
released periodically to give other threads a chance to run. This
should increase responsiveness of ZEO clients when used with ZEO 2.

New serial numbers are assigned consistently for abortVersion() and
commitVersion(). When a version is committed, the non-version data
gets a new serial number. When a version is aborted, the serial
number for non-version data does not change. This means that the
abortVersion() transaction record has the unique property that its
transaction id is not the serial number of the data records.

Berkeley Storages

Berkeley storage constructors now take an optional config argument,
which is an instance whose attributes can be used to configure such
BerkeleyDB policies as an automatic checkpointing interval, lock table
sizing, and the log directory. See bsddb3Storage/BerkeleyBase.py for
details.

A getSize() method has been added to all Berkeley storages.

Berkeley storages open their environments with the DB_THREAD flag.

Some performance optimizations have been implemented in Full storage,
including the addition of a helper C extension when used with Python
2.2. More performance improvements will be added for the ZODB 3.1
final release.

A new experimental Autopack storage was added which keeps only a
certain amount of old revision information. The concepts in this
storage will be folded into Full and Autopack will likely go away in
ZODB 3.1 final. ZODB 3.1 final will also have much improved Minimal
and Full storages, which eliminate Berkeley lock exhaustion problems,
reduce memory use, and improve performance.

It is recommended that you use BerkeleyDB 4.0.14 and PyBSDDB 3.4.0
with the Berkeley storages. See bsddb3Storage/README.txt for details.

BTrees

BTrees no longer ignore exceptions raised when two keys are compared.

Tim Peters fixed several endcase bugs in the BTrees code. Most
importantly, after a mix of inserts and deletes in a BTree or TreeSet, it
was possible (but unlikely) for the internal state of the object to become
inconsistent. Symptoms then varied; most often this manifested as a
mysterious failure to find a key that you knew was present, or that
tree.keys() would yield an object that disgreed with the tree about
how many keys there were.

If you suspect such a problem, BTrees and TreeSets now support a ._check()
method, which does a thorough job of examining the internal tree pointers
for consistency. It raises AssertionError if it finds any problems, else
returns None. If ._check() raises an exception, the object is damaged,
and rebuilding the object is the best solution. All known ways for a
BTree or TreeSet object to become internally inconsistent have been
repaired.

Other fixes include:

	Many fixes for range search endcases, including the “range search bug:”
If the smallest key S in a bucket in a BTree was deleted, doing a range
search on the BTree with S on the high end could claim that the range
was empty even when it wasn’t.

	Zope Collector #419: repaired off-by-1 errors and IndexErrors when
slicing BTree-based data structures. For example,
an_IIBTree.items()[0:0] had length 1 (should be empty) if the tree
wasn’t empty.

	The BTree module functions weightedIntersection() and weightedUnion()
now treat negative weights as documented. It’s hard to explain what
their effects were before this fix, as the sign bits were getting
confused with an internal distinction between whether the result
should be a set or a mapping.

ZEO

For news about ZEO2, see the file ZEO-NEWS.txt.

This version of ZODB ships with two different versions of ZEO. It
includes ZEO 2.0 beta 1, the recommended new version. (ZEO 2 will
reach final release before ZODB3.) The ZEO 2.0 protocol is not
compatible with ZEO 1.0, so we have also included ZEO 1.0 to support
people already using ZEO 1.0.

Other features

When a ConflictError is raised, the exception object now has a
sensible structure, thanks to a patch from Greg Ward. The exception
now uses the following standard attributes: oid, class_name, message,
serials. See the ZODB.POSException.ConflictError doc string for
details.

It is now easier to customize the registration of persistent objects
with a transaction. The low-level persistence mechanism in
cPersistence.c registers with the object’s jar instead of with the
current transaction. The jar (Connection) then registers with the
transaction. This redirection would allow specialized Connections to
change the default policy on how the transaction manager is selected
without hacking the Transaction module.

Empty transactions can be committed without interacting with the
storage. It is possible for registration to occur unintentionally and
for a persistent object to compensate by making itself as unchanged.
When this happens, it’s possible to commit a transaction with no
modified objects. The change allows such transactions to finish even
on a read-only storage.

Two new tools were added to the Tools directory. The analyze.py
script, based on a tool by Matt Kromer, prints a summary of space
usage in a FileStorage Data.fs. The checkbtrees.py script scans a
FileStorage Data.fs. When it finds a BTrees object, it loads the
object and calls the _check method. It prints warning messages
for any corrupt BTrees objects found.

Documentation

The user’s guide included with this release is still woefully out of date.

Other bugs fixed

If an exception occurs inside an _p_deactivate() method, a traceback
is printed on stderr. Previous versions of ZODB silently cleared the
exception.

ExtensionClass and ZODB now work correctly with a Python debug build.

All C code has been fixed to use a consistent set of functions from
the Python memory API. This allows ZODB to be used in conjunction
with pymalloc, the default allocator in Python 2.3.

zdaemon, which can be used to run a ZEO server, more clearly reports
the exit status of its child processes.

The ZEO server will reinitialize zLOG when it receives a SIGHUP. This
allows log file rotation without restarting the server.

What’s new in StandaloneZODB 1.0 final?

Release date: 08-Feb-2002

All copyright notices have been updated to reflect the fact that the
ZPL 2.0 covers this release.

Added a cleanroom PersistentList.py implementation, which multiply
inherits from UserDict and Persistent.

Some improvements in setup.py and test.py for sites that don’t have
the Berkeley libraries installed.

A new program, zeoup.py was added which simply verifies that a ZEO
server is reachable. Also, a new program zeopack.py was added which
connects to a ZEO server and packs it.

What’s new in StandaloneZODB 1.0 c1?

Release Date: 25-Jan-2002

This was the first public release of the StandaloneZODB from Zope
Corporation. Everything’s new! :)

Reference Documentation

	ZODB APIs
	ZODB module functions

	Databases

	Connections

	TimeStamp (transaction ids)

	Loading configuration

	Storage APIs
	Storage interfaces

	Included storages

	Noteworthy non-included storages

	Transactions
	ITransactionManager

	ITransaction

ZODB APIs

Contents

	ZODB APIs

	ZODB module functions

	Databases

	Database text configuration

	Connections

	TimeStamp (transaction ids)

	Loading configuration

ZODB module functions

	
DB(storage, *args, **kw)

	Create a database. See ZODB.DB.

	
ZODB.connection(*args, **kw)

	Create a database connection.

A database is created using the given arguments and opened to
create the returned connection. The database will be closed when
the connection is closed. This is a convenience function to avoid
managing a separate database object.

Databases

	
class ZODB.DB(storage, pool_size=7, pool_timeout=2147483648, cache_size=400, cache_size_bytes=0, historical_pool_size=3, historical_cache_size=1000, historical_cache_size_bytes=0, historical_timeout=300, database_name='unnamed', databases=None, xrefs=True, large_record_size=16777216, **storage_args)

	The Object Database

The DB class coordinates the activities of multiple database
Connection instances. Most of the work is done by the
Connections created via the open method.

The DB instance manages a pool of connections. If a connection is
closed, it is returned to the pool and its object cache is
preserved. A subsequent call to open() will reuse the connection.
There is no hard limit on the pool size. If more than pool_size
connections are opened, a warning is logged, and if more than twice
that many, a critical problem is logged.

The database provides a few methods intended for application code
– open, close, undo, and pack – and a large collection of
methods for inspecting the database and its connections’ caches.

	
__init__(storage, pool_size=7, pool_timeout=2147483648, cache_size=400, cache_size_bytes=0, historical_pool_size=3, historical_cache_size=1000, historical_cache_size_bytes=0, historical_timeout=300, database_name='unnamed', databases=None, xrefs=True, large_record_size=16777216, **storage_args)

	Create an object database.

	Parameters

	
	storage – the storage used by the database, such as a
FileStorage.
This can be a string path name to use a constructed
FileStorage
storage or None to use a constructed
MappingStorage.

	pool_size (int [https://docs.python.org/3/library/functions.html#int]) – expected maximum number of open connections.
Warnings are logged when this is exceeded and critical
messages are logged if twice the pool size is exceeded.

	pool_timeout (seconds) – Maximum age of inactive connections
When a connection has remained unused in a connection
pool for more than pool_timeout seconds, it will be
discarded and it’s resources released.

	cache_size (objects) – target maximum number of non-ghost
objects in each connection object cache.

	cache_size_bytes (int [https://docs.python.org/3/library/functions.html#int]) – target total memory usage of non-ghost
objects in each connection object cache.

	historical_pool_size (int [https://docs.python.org/3/library/functions.html#int]) – expected maximum number of total
historical connections

	historical_cache_size (objects) – target maximum number
of non-ghost objects in each historical connection object
cache.

	historical_cache_size_bytes (int [https://docs.python.org/3/library/functions.html#int]) – target total memory
usage of non-ghost objects in each historical connection
object cache.

	historical_timeout (seconds) – Maximum age of inactive
historical connections. When a connection has remained
unused in a historical connection pool for more than pool_timeout
seconds, it will be discarded and it’s resources
released.

	database_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this database in a
multi-database configuration. The name is used when
constructing cross-database references ans when accessing
database connections fron other databases.

	databases (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of database name to
databases in a multi-database configuration. The new
database will add itself to this dictionary. The
dictionary is used when getting connections in other databases.

	xrefs (boolean) – Flag indicating whether cross-database
references are allowed from this database to other
databases in a multi-database configuration.

	large_record_size (int [https://docs.python.org/3/library/functions.html#int]) – When object records are saved
that are larger than this, a warning is issued,
suggesting that blobs should be used instead.

	storage_args – Extra keywork arguments passed to a
storage constructor if a path name or None is passed as
the storage argument.

	
cacheDetail()

	Return object counts by class accross all connections.

	
cacheDetailSize()

	Return non-ghost counts sizes for all connections.

	
cacheExtremeDetail()

	Return information about all of the objects in the object caches.

Information includes a connection number, class, object id,
reference count and state. The reference count returned
excludes references help by ZODB itself.

	
cacheMinimize()

	Minimize cache sizes for all connections

	
cacheSize()

	Return the total count of non-ghost objects in all object caches

	
close()

	Close the database and its underlying storage.

It is important to close the database, because the storage may
flush in-memory data structures to disk when it is closed.
Leaving the storage open with the process exits can cause the
next open to be slow.

What effect does closing the database have on existing
connections? Technically, they remain open, but their storage
is closed, so they stop behaving usefully. Perhaps close()
should also close all the Connections.

	
connectionDebugInfo()

	Get debugging information about connections

This is especially useful to debug connections that seem to be
leaking or open too long. Information includes connection
info, the connection before setting, and, if a connection is
open, the time it was opened. The info is the result of
calling getDebugInfo() on
the connection, and the connection’s cache size.

	
getCacheSize()

	Get the configured cache size (objects).

	
getCacheSizeBytes()

	Get the configured cache size in bytes.

	
getHistoricalCacheSize()

	Get the configured historical cache size (objects).

	
getHistoricalCacheSizeBytes()

	Get the configured historical cache size in bytes.

	
getHistoricalPoolSize()

	Get the configured historical pool size

	
getHistoricalTimeout()

	Get the configured historical pool timeout

	
getName()

	Get the storage name

	
getPoolSize()

	Get the configured pool size

	
getSize()

	Get the approximate database size, in bytes

	
history(oid, size=1)

	Get revision history information for an object.

See ZODB.interfaces.IStorage.history().

	
lastTransaction()

	Get the storage last transaction id.

	
objectCount()

	Get the approximate object count

	
open(transaction_manager=None, at=None, before=None)

	Return a database Connection for use by application code.

Note that the connection pool is managed as a stack, to
increase the likelihood that the connection’s stack will
include useful objects.

	Parameters

	
	transaction_manager: transaction manager to use. None means
use the default transaction manager.

	at: a datetime.datetime or 8 character transaction id of the
time to open the database with a read-only connection. Passing
both at and before raises a ValueError, and passing neither
opens a standard writable transaction of the newest state.
A timezone-naive datetime.datetime is treated as a UTC value.

	before: like at, but opens the readonly state before the
tid or datetime.

	
pack(t=None, days=0)

	Pack the storage, deleting unused object revisions.

A pack is always performed relative to a particular time, by
default the current time. All object revisions that are not
reachable as of the pack time are deleted from the storage.

The cost of this operation varies by storage, but it is
usually an expensive operation.

There are two optional arguments that can be used to set the
pack time: t, pack time in seconds since the epcoh, and days,
the number of days to subtract from t or from the current
time if t is not specified.

	
setCacheSize(size)

	Reconfigure the cache size (non-ghost object count)

	
setCacheSizeBytes(size)

	Reconfigure the cache total size in bytes

	
setHistoricalCacheSize(size)

	Reconfigure the historical cache size (non-ghost object count)

	
setHistoricalCacheSizeBytes(size)

	Reconfigure the historical cache total size in bytes

	
setHistoricalPoolSize(size)

	Reconfigure the connection historical pool size

	
setHistoricalTimeout(timeout)

	Reconfigure the connection historical pool timeout

	
setPoolSize(size)

	Reconfigure the connection pool size

	
storage = storage object

	Database storage, implementing IStorage

	
supportsUndo()

	Return whether the database supports undo.

	
transaction(note=None)

	Execute a block of code as a transaction.

If a note is given, it will be added to the transaction’s
description.

The transaction method returns a context manager that can
be used with the with statement.

	
undo(id, txn=None)

	Undo a transaction identified by id.

A transaction can be undone if all of the objects involved in
the transaction were not modified subsequently, if any
modifications can be resolved by conflict resolution, or if
subsequent changes resulted in the same object state.

The value of id should be generated by calling undoLog()
or undoInfo(). The value of id is not the same as a
transaction id used by other methods; it is unique to undo().

	Parameters

	
	id: a transaction identifier

	txn: transaction context to use for undo().
By default, uses the current transaction.

	
undoInfo(*args, **kw)

	Return a sequence of descriptions for transactions.

See ZODB.interfaces.IStorageUndoable.undoInfo().

	
undoLog(*args, **kw)

	Return a sequence of descriptions for transactions.

See ZODB.interfaces.IStorageUndoable.undoLog().

	
undoMultiple(ids, txn=None)

	Undo multiple transactions identified by ids.

A transaction can be undone if all of the objects involved in
the transaction were not modified subsequently, if any
modifications can be resolved by conflict resolution, or if
subsequent changes resulted in the same object state.

The values in ids should be generated by calling undoLog()
or undoInfo(). The value of ids are not the same as a
transaction ids used by other methods; they are unique to undo().

	Parameters

	
	ids: a sequence of storage-specific transaction identifiers

	txn: transaction context to use for undo().
By default, uses the current transaction.

Database text configuration

Databases are configured with zodb sections:

<zodb>
 cache-size-bytes 100MB
 <mappingstorage>
 </mappingstorage>
</zodb>

A zodb section must have a storage sub-section specifying a
storage and any of the following options:

	allow-implicit-cross-references (boolean)

	If set to false, implicit cross references (the only kind
currently possible) are disallowed.

	cache-size (integer, default: 5000)

	Target size, in number of objects, of each connection’s
object cache.

	cache-size-bytes (byte-size, default: 0)

	Target size, in total estimated size for objects, of each connection’s
object cache.
“0” means no limit.

	database-name (string)

	When multi-databases are in use, this is the name given to this
database in the collection. The name must be unique across all
databases in the collection. The collection must also be given
a mapping from its databases’ names to their databases, but that
cannot be specified in a ZODB config file. Applications using
multi-databases typical supply a way to configure the mapping in
their own config files, using the “databases” parameter of a DB
constructor.

	historical-cache-size (integer, default: 1000)

	Target size, in number of objects, of each historical connection’s
object cache.

	historical-cache-size-bytes (byte-size, default: 0)

	Target size, in total estimated size of objects, of each historical connection’s
object cache.

	historical-pool-size (integer, default: 3)

	The expected maximum total number of historical connections
simultaneously open.

	historical-timeout (time-interval, default: 5m)

	The minimum interval that an unused historical connection should be
kept.

	large-record-size (byte-size, default: 16MB)

	When object records are saved
that are larger than this, a warning is issued,
suggesting that blobs should be used instead.

	pool-size (integer, default: 7)

	The expected maximum number of simultaneously open connections.
There is no hard limit (as many connections as are requested
will be opened, until system resources are exhausted). Exceeding
pool-size connections causes a warning message to be logged,
and exceeding twice pool-size connections causes a critical
message to be logged.

	pool-timeout (time-interval)

	The minimum interval that an unused (non-historical)
connection should be kept.

For a multi-database configuration, use multiple zodb sections and
give the sections names:

<zodb first>
 cache-size-bytes 100MB
 <mappingstorage>
 </mappingstorage>
</zodb>

<zodb second>
 <mappingstorage>
 </mappingstorage>
</zodb>

When the configuration is loaded, a single database will be returned,
but all of the databases will be available through the returned
database’s databases attribute.

Connections

	
class ZODB.Connection.Connection(db, cache_size=400, before=None, cache_size_bytes=0)

	Connection to ZODB for loading and storing objects.

Connections manage object state in collaboration with transaction
managers. They’re created by calling the
open() method on database objects.

	
add(obj)

	Add a new object ‘obj’ to the database and assign it an oid.

	
cacheGC()

	Reduce cache size to target size.

	
cacheMinimize()

	Deactivate all unmodified objects in the cache.

	
close(primary=True)

	Close the Connection.

	
db()

	Returns a handle to the database this connection belongs to.

	
get(oid)

	Return the persistent object with oid ‘oid’.

	
getDebugInfo()

	Returns a tuple with different items for debugging the
connection.

	
get_connection(database_name)

	Return a Connection for the named database.

	
isReadOnly()

	Returns True if this connection is read only.

	
oldstate(obj, tid)

	Return copy of ‘obj’ that was written by transaction ‘tid’.

	
onCloseCallback(f)

	Register a callable, f, to be called by close().

	
root

	Return the database root object.

	
setDebugInfo(*args)

	Add the given items to the debug information of this connection.

	
sync()

	Manually update the view on the database.

	
transaction_manager = current transaction manager

	Transaction manager associated with the connection when it was opened.

TimeStamp (transaction ids)

	
class ZODB.TimeStamp.TimeStamp(year, month, day, hour, minute, seconds)

	Create a time-stamp object. Time stamps facilitate the computation
of transaction ids, which are based on times. The arguments are
integers, except for seconds, which may be a floating-point
number. Time stamps have microsecond precision. Time stamps are
implicitly UTC based.

Time stamps are orderable and hashable.

	
day()

	Return the time stamp’s day.

	
hour()

	Return the time stamp’s hour.

	
laterThan(other)

	Return a timestamp instance which is later than ‘other’.

If self already qualifies, return self.

Otherwise, return a new instance one moment later than ‘other’.

	
minute()

	Return the time stamp’s minute.

	
month()

	Return the time stamp’s month.

	
raw()

	Get an 8-byte representation of the time stamp for use in APIs
that require a time stamp.

	
second()

	Return the time stamp’s second.

	
timeTime()

	Return the time stamp as seconds since the epoc, as used by the
time module.

	
year()

	Return the time stamp’s year.

Loading configuration

Open database and storage from a configuration.

	
ZODB.config.databaseFromString(s)

	Create a database from a database-configuration string.

The string must contain one or more zodb sections.

The database defined by the first section is returned.

If more than one zodb section is provided, a multi-database
configuration will be created and all of the databases will be
available in the returned database’s databases attribute.

	
ZODB.config.databaseFromFile(f)

	Create a database from a file object that provides configuration.

See databaseFromString().

	
ZODB.config.databaseFromURL(url)

	Load a database from URL (or file name) that provides configuration.

See databaseFromString().

	
ZODB.config.storageFromString(s)

	Create a storage from a storage-configuration string.

	
ZODB.config.storageFromFile(f)

	Create a storage from a file object providing storage-configuration.

	
ZODB.config.storageFromURL(url)

	Create a storage from a URL (or file name) providing storage-configuration.

Storage APIs

Contents

	Storage APIs

	Storage interfaces

	IStorage

	IStorageIteration

	IStorageUndoable

	IStorageCurrentRecordIteration

	IBlobStorage

	IStorageRecordInformation

	IStorageTransactionInformation

	Included storages

	FileStorage

	FileStorage text configuration

	MappingStorage

	MappingStorage text configuration

	DemoStorage

	DemoStorage text configuration

	Noteworthy non-included storages

	Base storages

	Optional layers

Storage interfaces

There are various storage implementations that implement standard
storage interfaces. They differ primarily in their constructors.

Application code rarely calls storage methods, and those it calls are
generally called indirectly through databases. There are
interface-defined methods that are called internally by ZODB. These
aren’t shown below.

IStorage

	
interface ZODB.interfaces.IStorage

	A storage is responsible for storing and retrieving data of objects.

Consistency and locking

When transactions are committed, a storage assigns monotonically
increasing transaction identifiers (tids) to the transactions and
to the object versions written by the transactions. ZODB relies
on this to decide if data in object caches are up to date and to
implement multi-version concurrency control.

There are methods in IStorage and in derived interfaces that
provide information about the current revisions (tids) for objects
or for the database as a whole. It is critical for the proper
working of ZODB that the resulting tids are increasing with
respect to the object identifier given or to the databases. That
is, if there are 2 results for an object or for the database, R1
and R2, such that R1 is returned before R2, then the tid returned
by R2 must be greater than or equal to the tid returned by R1.
(When thinking about results for the database, think of these as
results for all objects in the database.)

This implies some sort of locking strategy. The key method is
tcp_finish, which causes new tids to be generated and also,
through the callback passed to it, returns new current tids for
the objects stored in a transaction and for the database as a whole.

The IStorage methods affected are lastTransaction, load, store,
and tpc_finish. Derived interfaces may introduce additional
methods.

	
__len__()

	The approximate number of objects in the storage

This is used soley for informational purposes.

	
close()

	Close the storage.

Finalize the storage, releasing any external resources. The
storage should not be used after this method is called.

Note that databases close their storages when they’re closed, so
this method isn’t generally called from application code.

	
getName()

	The name of the storage

The format and interpretation of this name is storage
dependent. It could be a file name, a database name, etc..

This is used soley for informational purposes.

	
getSize()

	An approximate size of the database, in bytes.

This is used soley for informational purposes.

	
history(oid, size=1)

	Return a sequence of history information dictionaries.

Up to size objects (including no objects) may be returned.

The information provides a log of the changes made to the
object. Data are reported in reverse chronological order.

Each dictionary has the following keys:

	time

	UTC seconds since the epoch (as in time.time) that the
object revision was committed.

	tid

	The transaction identifier of the transaction that
committed the version.

	serial

	An alias for tid, which expected by older clients.

	user_name

	The bytes user identifier, if any (or an empty string) of the
user on whos behalf the revision was committed.

	description

	The bytes transaction description for the transaction that
committed the revision.

	size

	The size of the revision data record.

If the transaction had extension items, then these items are
also included if they don’t conflict with the keys above.

	
isReadOnly()

	Test whether a storage allows committing new transactions

For a given storage instance, this method always returns the
same value. Read-only-ness is a static property of a storage.

	
lastTransaction()

	Return the id of the last committed transaction.

If no transactions have been committed, return a string of 8
null (0) characters.

	
pack(pack_time, referencesf)

	Pack the storage

It is up to the storage to interpret this call, however, the
general idea is that the storage free space by:

	discarding object revisions that were old and not current as of the
given pack time.

	garbage collecting objects that aren’t reachable from the
root object via revisions remaining after discarding
revisions that were not current as of the pack time.

The pack time is given as a UTC time in seconds since the
epoch.

The second argument is a function that should be used to
extract object references from database records. This is
needed to determine which objects are referenced from object
revisions.

	
sortKey()

	Sort key used to order distributed transactions

When a transaction involved multiple storages, 2-phase commit
operations are applied in sort-key order. This must be unique
among storages used in a transaction. Obviously, the storage
can’t assure this, but it should construct the sort key so it
has a reasonable chance of being unique.

The result must be a string.

IStorageIteration

	
interface ZODB.interfaces.IStorageIteration

	API for iterating over the contents of a storage.

	
iterator(start=None, stop=None)

	Return an IStorageTransactionInformation iterator.

If the start argument is not None, then iteration will start
with the first transaction whose identifier is greater than or
equal to start.

If the stop argument is not None, then iteration will end with
the last transaction whose identifier is less than or equal to
stop.

The iterator provides access to the data as available at the time when
the iterator was retrieved.

IStorageUndoable

	
interface ZODB.interfaces.IStorageUndoable

	A storage supporting transactional undo.

	
undoInfo(first=0, last=-20, specification=None)

	Return a sequence of descriptions for undoable transactions.

This is like undoLog(), except for the specification argument.
If given, specification is a dictionary, and undoInfo()
synthesizes a filter function f for undoLog() such that
f(desc) returns true for a transaction description mapping
desc if and only if desc maps each key in specification to
the same value specification maps that key to. In other words,
only extensions (or supersets) of specification match.

ZEO note: undoInfo() passes the specification argument from a
ZEO client to its ZEO server (while a ZEO client ignores any filter
argument passed to undoLog()).

	
undoLog(first, last, filter=None)

	Return a sequence of descriptions for undoable transactions.

Application code should call undoLog() on a DB instance instead of on
the storage directly.

A transaction description is a mapping with at least these keys:

	“time”: The time, as float seconds since the epoch, when

	the transaction committed.

	“user_name”: The bytes value of the .user attribute on that

	transaction.

	“description”: The bytes value of the .description attribute on

	that transaction.

	“id`” A bytes uniquely identifying the transaction to the

	storage. If it’s desired to undo this transaction,
this is the transaction_id to pass to undo().

In addition, if any name+value pairs were added to the transaction
by setExtendedInfo(), those may be added to the transaction
description mapping too (for example, FileStorage’s undoLog() does
this).

filter is a callable, taking one argument. A transaction
description mapping is passed to filter for each potentially
undoable transaction. The sequence returned by undoLog() excludes
descriptions for which filter returns a false value. By default,
filter always returns a true value.

ZEO note: Arbitrary callables cannot be passed from a ZEO client
to a ZEO server, and a ZEO client’s implementation of undoLog()
ignores any filter argument that may be passed. ZEO clients
should use the related undoInfo() method instead (if they want
to do filtering).

Now picture a list containing descriptions of all undoable
transactions that pass the filter, most recent transaction first (at
index 0). The first and last arguments specify the slice of this
(conceptual) list to be returned:

	first: This is the index of the first transaction description

	in the slice. It must be >= 0.

	last: If >= 0, first:last acts like a Python slice, selecting

	the descriptions at indices first, first+1, …, up to
but not including index last. At most last-first
descriptions are in the slice, and last should be at
least as large as first in this case. If last is
less than 0, then abs(last) is taken to be the maximum
number of descriptions in the slice (which still begins
at index first). When last < 0, the same effect
could be gotten by passing the positive first-last for
last instead.

IStorageCurrentRecordIteration

	
interface ZODB.interfaces.IStorageCurrentRecordIteration

	
	
record_iternext(next=None)

	Iterate over the records in a storage

Use like this:

>>> next = None
>>> while 1:
... oid, tid, data, next = storage.record_iternext(next)
... # do things with oid, tid, and data
... if next is None:
... break

IBlobStorage

	
interface ZODB.interfaces.IBlobStorage

	A storage supporting BLOBs.

	
temporaryDirectory()

	Return a directory that should be used for uncommitted blob data.

If Blobs use this, then commits can be performed with a simple rename.

IStorageRecordInformation

	
interface ZODB.interfaces.IStorageRecordInformation

	Provide information about a single storage record

	
data = <zope.interface.interface.Attribute object at 0x7f19eafbfd50 ZODB.interfaces.IStorageRecordInformation.data>

	The data record, bytes

	
data_txn = <zope.interface.interface.Attribute object at 0x7f19eafbfd90 ZODB.interfaces.IStorageRecordInformation.data_txn>

	The previous transaction id, bytes

	
oid = <zope.interface.interface.Attribute object at 0x7f19eafbfa90 ZODB.interfaces.IStorageRecordInformation.oid>

	The object id, bytes

	
tid = <zope.interface.interface.Attribute object at 0x7f19eafbfd10 ZODB.interfaces.IStorageRecordInformation.tid>

	The transaction id, bytes

IStorageTransactionInformation

	
interface ZODB.interfaces.IStorageTransactionInformation

	Provide information about a storage transaction.

Can be iterated over to retrieve the records modified in the transaction.

Note that this may contain a status field used by FileStorage to
support packing. At some point, this will go away when FileStorage
has a better pack algoritm.

	
__iter__()

	Iterate over the transaction’s records given as
IStorageRecordInformation objects.

	
tid = <zope.interface.interface.Attribute object at 0x7f19eafbfdd0 ZODB.interfaces.IStorageTransactionInformation.tid>

	Transaction id

Included storages

FileStorage

	
class ZODB.FileStorage.FileStorage.FileStorage(file_name, create=False, read_only=False, stop=None, quota=None, pack_gc=True, pack_keep_old=True, packer=None, blob_dir=None)

	Storage that saves data in a file

	
__init__(file_name, create=False, read_only=False, stop=None, quota=None, pack_gc=True, pack_keep_old=True, packer=None, blob_dir=None)

	Create a file storage

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to store data file

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether a file should be
created even if it already exists.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether the file is
read only. Only one process is able to open the file
non-read-only.

	stop (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Time-travel transaction id
When the file is opened, data will be read up to the given
transaction id. Transaction ids correspond to times and
you can compute transaction ids for a given time using
TimeStamp.

	quota (int [https://docs.python.org/3/library/functions.html#int]) – File-size quota

	pack_gc (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether garbage
collection should be performed when packing.

	pack_keep_old (bool [https://docs.python.org/3/library/functions.html#bool]) – flag indicating whether old data
files should be retained after packing as a .old file.

	packer (callable) – An alternative
packer.

	blob_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A blob-directory path name.
Blobs will be supported if this option is provided.

A file storage stores data in a single file that behaves like
a traditional transaction log. New data records are appended
to the end of the file. Periodically, the file is packed to
free up space. When this is done, current records as of the
pack time or later are copied to a new file, which replaces
the old file.

FileStorages keep in-memory indexes mapping object oids to the
location of their current records in the file. Back pointers to
previous records allow access to non-current records from the
current records.

In addition to the data file, some ancillary files are
created. These can be lost without affecting data
integrity, however losing the index file may cause extremely
slow startup. Each has a name that’s a concatenation of the
original file and a suffix. The files are listed below by
suffix:

	.index

	Snapshot of the in-memory index. This are created on
shutdown, packing, and after rebuilding an index when one
was not found. For large databases, creating a
file-storage object without an index file can take very
long because it’s necessary to scan the data file to build
the index.

	.lock

	A lock file preventing multiple processes from opening a
file storage on non-read-only mode.

	.tmp

	A file used to store data being committed in the first phase
of 2-phase commit

	.index_tmp

	A temporary file used when saving the in-memory index to
avoid overwriting an existing index until a new index has
been fully saved.

	.pack

	A temporary file written while packing containing current
records as of and after the pack time.

	.old

	The previous database file after a pack.

When the database is packed, current records as of the pack
time and later are written to the .pack file. At the end
of packing, the .old file is removed, if it exists, and
the data file is renamed to the .old file and finally the
.pack file is rewritten to the data file.

	
interface ZODB.FileStorage.interfaces.IFileStoragePacker

	
	
__call__(storage, referencesf, stop, gc)

	Pack the file storage into a new file

	Parameters

	
	storage (FileStorage) – The storage object to be packed

	referencesf (callable) – A function that extracts object
references from a pickle bytes string. This is usually
ZODB.serialize.referencesf.

	stop (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A transaction id representing the time at
which to stop packing.

	gc (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag indicating whether garbage collection
should be performed.

The new file will have the same name as the old file with
.pack appended. (The packer can get the old file name via
storage._file.name.) If blobs are supported, if the storages
blob_dir attribute is not None or empty, then a .removed file
must be created in the blob directory. This file contains records of
the form:

(oid+serial).encode('hex')+'\n'

or, of the form:

oid.encode('hex')+'\n'

If packing is unnecessary, or would not change the file, then
no pack or removed files are created None is returned,
otherwise a tuple is returned with:

	the size of the packed file, and

	the packed index

If and only if packing was necessary (non-None) and there was
no error, then the commit lock must be acquired. In addition,
it is up to FileStorage to:

	Rename the .pack file, and

	process the blob_dir/.removed file by removing the blobs
corresponding to the file records.

FileStorage text configuration

File storages are configured using the filestorage section:

<filestorage>
 path Data.fs
</filestorage>

which accepts the following options:

	blob-dir (existing-dirpath)

	If supplied, the file storage will provide blob support and this
is the name of a directory to hold blob data. The directory will
be created if it doesn’t exist. If no value (or an empty value)
is provided, then no blob support will be provided. (You can still
use a BlobStorage to provide blob support.)

	create (boolean)

	Flag that indicates whether the storage should be truncated if
it already exists.

	pack-gc (boolean, default: true)

	If false, then no garbage collection will be performed when
packing. This can make packing go much faster and can avoid
problems when objects are referenced only from other
databases.

	pack-keep-old (boolean, default: true)

	If true, a copy of the database before packing is kept in a
“.old” file.

	packer (string)

	The dotted name (dotted module name and object name) of a
packer object. This is used to provide an alternative pack
implementation.

	path (existing-dirpath, required)

	Path name to the main storage file. The names for
supplemental files, including index and lock files, will be
computed from this.

	quota (byte-size)

	Maximum allowed size of the storage file. Operations which
would cause the size of the storage to exceed the quota will
result in a ZODB.FileStorage.FileStorageQuotaError being
raised.

	read-only (boolean)

	If true, only reads may be executed against the storage. Note
that the “pack” operation is not considered a write operation
and is still allowed on a read-only filestorage.

MappingStorage

	
class ZODB.MappingStorage.MappingStorage(name='MappingStorage')

	In-memory storage implementation

Note that this implementation is somewhat naive and inefficient
with regard to locking. Its implementation is primarily meant to
be a simple illustration of storage implementation. It’s also
useful for testing and exploration where scalability and efficiency
are unimportant.

	
__init__(name='MappingStorage')

	Create a mapping storage

The name parameter is used by the
getName() and
sortKey() methods.

MappingStorage text configuration

File storages are configured using the mappingstorage section:

<mappingstorage>
</mappingstorage>

Options:

	name (string, default: Mapping Storage)

	The storage name, used by the
getName() and
sortKey() methods.

DemoStorage

	
class ZODB.DemoStorage.DemoStorage(name=None, base=None, changes=None, close_base_on_close=None, close_changes_on_close=None)

	A storage that stores changes against a read-only base database

This storage was originally meant to support distribution of
application demonstrations with populated read-only databases (on
CDROM) and writable in-memory databases.

Demo storages are extemely convenient for testing where setup of a
base database can be shared by many tests.

Demo storages are also handy for staging appplications where a
read-only snapshot of a production database (often accomplished
using a beforestorage [https://pypi.python.org/pypi/zc.beforestorage]) is combined
with a changes database implemented with a
FileStorage.

	
__init__(name=None, base=None, changes=None, close_base_on_close=None, close_changes_on_close=None)

	Create a demo storage

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The storage name used by the
getName() and
sortKey() methods.

	base (object [https://docs.python.org/3/library/functions.html#object]) – base storage

	changes (object [https://docs.python.org/3/library/functions.html#object]) – changes storage

	close_base_on_close (bool [https://docs.python.org/3/library/functions.html#bool]) – A Flag indicating whether the base
database should be closed when the demo storage is closed.

	close_changes_on_close (bool [https://docs.python.org/3/library/functions.html#bool]) – A Flag indicating whether the
changes database should be closed when the demo storage is closed.

If a base database isn’t provided, a
MappingStorage will be
constructed and used.

If close_base_on_close isn’t specified, it will be True if
a base database was provided and False otherwise.

If a changes database isn’t provided, a
MappingStorage will be
constructed and used and blob support will be provided using a
temporary blob directory.

If close_changes_on_close isn’t specified, it will be True if
a changes database was provided and False otherwise.

	
pop()

	Close the changes database and return the base.

	
push(changes=None)

	Create a new demo storage using the storage as a base.

The given changes are used as the changes for the returned
storage and False is passed as close_base_on_close.

DemoStorage text configuration

Demo storages are configured using the demostorage section:

<demostorage>
 <filestorage base>
 path base.fs
 </filestorage>
 <mappingstorage changes>
 name Changes
 </mappingstorage>
</demostorage>

demostorage sections can contain up to 2 storage subsections,
named base and changes, specifying the demo storage’s base and
changes storages. See ZODB.DemoStorage.DemoStorage.__init__()
for more on the base and changes storages.

Options:

	name (string)

	The storage name, used by the
getName() and
sortKey() methods.

Noteworthy non-included storages

A number of important ZODB storages are distributed separately.

Base storages

Unlike the included storages, all the implementations listed in this section
allow multiple processes to share the same database.

	NEO

	NEO [https://lab.nexedi.com/nexedi/neoppod] can spread data among several
computers for load-balancing and multi-master replication. It also supports
asynchronous replication to off-site NEO databases for further disaster
resistance without affecting local operation latency.

For more information, see https://lab.nexedi.com/nexedi/neoppod.

	RelStorage

	RelStorage [http://relstorage.readthedocs.io/en/latest/]
stores data in relational databases. This is especially
useful when you have requirements or existing infrastructure for
storing data in relational databases.

For more information, see http://relstorage.readthedocs.io/en/latest/.

	ZEO

	ZEO [https://github.com/zopefoundation/ZEO] is a client-server
database implementation for ZODB. To use ZEO, you run a ZEO server,
and use ZEO clients in your application.

For more information, see https://github.com/zopefoundation/ZEO.

Optional layers

	ZRS

	ZRS [https://github.com/zc/zrs]
provides replication from one database to another. It’s most
commonly used with ZEO. With ZRS, you create a ZRS primary database
around a FileStorage and in a
separate process, you create a ZRS secondary storage around any
storage. As transactions are
committed on the primary, they’re copied asynchronously to
secondaries.

For more information, see https://github.com/zc/zrs.

	zlibstorage

	zlibstorage [https://pypi.org/project/zc.zlibstorage/]
compresses database records using the compression
algorithm used by gzip [http://www.gzip.org/].

For more information, see https://pypi.org/project/zc.zlibstorage/.

	beforestorage

	beforestorage [https://pypi.org/project/zc.beforestorage/]
provides a point-in-time view of a database that might
be changing. This can be useful to provide a non-changing view of a
production database for use with a DemoStorage.

For more information, see https://pypi.org/project/zc.beforestorage/.

	cipher.encryptingstorage

	cipher.encryptingstorage [https://pypi.org/project/cipher.encryptingstorage/] provided
compression and encryption of database records.

For more information, see
https://pypi.org/project/cipher.encryptingstorage/.

Transactions

Transaction support is provided by the transaction [http://transaction.readthedocs.io/en/latest/] package
1, which is installed
automatically when you install ZODB. There are two important APIs
provided by the transaction package, ITransactionManager and
ITransaction, described below.

ITransactionManager

	
interface transaction.interfaces.ITransactionManager

	An object that manages a sequence of transactions.

Applications use transaction managers to establish transaction boundaries.

A transaction manager supports the “context manager” protocol:
Its __enter__ begins a new transaction; its __exit__ commits
the current transaction if no exception has occured; otherwise,
it aborts it.

	
abort()

	Abort the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

	
begin()

	Explicitly begin and return a new transaction.

If an existing transaction is in progress and the transaction
manager not in explicit mode, the previous transaction will be
aborted. If an existing transaction is in progress and the
transaction manager is in explicit mode, an
AlreadyInTransaction exception will be raised..

The ~ISynchronizer.newTransaction method of registered synchronizers is called,
passing the new transaction object.

Note that when not in explicit mode, transactions may be
started implicitly without calling begin. In that case,
newTransaction isn’t called because the transaction
manager doesn’t know when to call it. The transaction is
likely to have begun long before the transaction manager is
involved. (Conceivably the commit and abort methods
could call begin, but they don’t.)

	
commit()

	Commit the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

	
doom()

	Doom the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

	
get()

	Get the current transaction.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

	
isDoomed()

	Returns True if the current transaction is doomed, otherwise False.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

	
savepoint(optimistic=False)

	Create a savepoint from the current transaction.

If the optimistic argument is true, then data managers that
don’t support savepoints can be used, but an error will be
raised if the savepoint is rolled back.

An ISavepoint object is returned.

In explicit mode, if a transaction hasn’t begun, a
NoTransaction exception will be raised.

ITransaction

	
interface transaction.interfaces.ITransaction

	Object representing a running transaction.

	
abort()

	Abort the transaction.

This is called from the application. This can only be called
before the two-phase commit protocol has been started.

	
addAfterCommitHook(hook, args=(), kws=None)

	Register a hook to call after a transaction commit
attempt.

The specified hook function will be called after the
transaction commit succeeds or aborts. The first argument
passed to the hook is a Boolean value, True if the commit
succeeded, or False if the commit aborted.

args and kws are interpreted as for addBeforeCommitHook
(with the exception that there is always one positional
argument, the commit status).

As with addBeforeCommitHook, multiple hooks can be
registered, savepoint creation doesn’t call any hooks, and
calling a hook consumes its registration.

	
addBeforeCommitHook(hook, args=(), kws=None)

	Register a hook to call before the transaction is
committed.

The specified hook function will be called after the
transaction’s commit method has been called, but before the
commit process has been started.

	Parameters

	
	args (sequence) – Additional positional arguments to be passed to the hook.
The default is to pass no positional arguments.

	kws (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the hook. The default
is to pass no keyword arguments.

Multiple hooks can be registered and will be called in the
order they were registered (first registered, first called).
This method can also be called from a hook: an executing hook
can register more hooks. Applications should take care to
avoid creating infinite loops by recursively registering
hooks.

Hooks are called only for a top-level commit. A savepoint
creation does not call any hooks. If the transaction is
aborted, hooks are not called, and are discarded. Calling a
hook “consumes” its registration too: hook registrations do
not persist across transactions. If it’s desired to call the
same hook on every transaction commit, then
addBeforeCommitHook must be called with that hook during
every transaction; in such a case consider registering a
synchronizer object via ITransactionManager.registerSynch
instead.

	
commit()

	Finalize the transaction.

This executes the two-phase commit algorithm for all
IDataManager objects associated with the transaction.

	
description = <zope.interface.interface.Attribute object at 0x7f19eaf9c750 transaction.interfaces.ITransaction.description>

	A textual description of the transaction.

The value is text (unicode). Method note is the intended
way to set the value. Storages record the description, as meta-data,
when a transaction commits.

A storage may impose a limit on the size of the description; behavior
is undefined if such a limit is exceeded (for example, a storage may
raise an exception, or truncate the value).

	
doom()

	Doom the transaction.

Dooms the current transaction. This will cause
DoomedTransaction to be raised on any attempt to commit the
transaction.

Otherwise the transaction will behave as if it was active.

	
getAfterCommitHooks()

	Return iterable producing the registered addAfterCommitHook
hooks.

As with getBeforeCommitHooks, a triple (hook, args, kws)
is produced for each registered hook. The hooks are produced
in the order in which they would be invoked by a top-level
transaction commit.

	
getBeforeCommitHooks()

	Return iterable producing the registered addBeforeCommitHook hooks.

A triple (hook, args, kws) is produced for each registered hook.
The hooks are produced in the order in which they would be invoked
by a top-level transaction commit.

	
note(text)

	Add text (unicode) to the transaction description.

This modifies the description attribute; see its docs for more
detail. First surrounding whitespace is stripped from text. If
description is currently an empty string, then the stripped text
becomes its value, else two newlines and the stripped text are
appended to description.

	
savepoint(optimistic=False)

	Create a savepoint.

If the optimistic argument is true, then data managers that don’t
support savepoints can be used, but an error will be raised if the
savepoint is rolled back.

An ISavepoint object is returned.

	
setExtendedInfo(name, value)

	Add extension data to the transaction.

	Parameters

	
	name (text) – is the text (unicode) name of the extension property to set

	value – must be picklable and json serializable

Multiple calls may be made to set multiple extension
properties, provided the names are distinct.

Storages record the extension data, as meta-data, when a transaction
commits.

A storage may impose a limit on the size of extension data; behavior
is undefined if such a limit is exceeded (for example, a storage may
raise an exception, or remove <name, value> pairs).

	
user = <zope.interface.interface.Attribute object at 0x7f19eaf9c390 transaction.interfaces.ITransaction.user>

	A user name associated with the transaction.

The format of the user name is defined by the application. The value
is text (unicode). Storages record the user value, as meta-data,
when a transaction commits.

A storage may impose a limit on the size of the value; behavior is
undefined if such a limit is exceeded (for example, a storage may
raise an exception, or truncate the value).

	1

	The :mod:transaction
package is a general purpose package for managing distributed
transactions [https://en.wikipedia.org/wiki/Distributed_transaction] with a
two-phase commit protocol [https://en.wikipedia.org/wiki/Two-phase_commit_protocol]. It
can and occasionally is used with packages other than ZODB.

 Python Module Index

 z

 		 	

 		
 z	

 	[image: -]
 	
 ZODB	

 	
 	
 ZODB.config	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | Y
 | Z

_

 	
 	__call__() (ZODB.FileStorage.interfaces.IFileStoragePacker method)

 	__init__() (ZODB.DB method)

 	(ZODB.DemoStorage.DemoStorage method)

 	(ZODB.FileStorage.FileStorage.FileStorage method)

 	(ZODB.MappingStorage.MappingStorage method)

 	
 	__iter__() (ZODB.interfaces.IStorageTransactionInformation method)

 	__len__() (ZODB.interfaces.IStorage method)

A

 	
 	abort() (transaction.interfaces.ITransaction method)

 	(transaction.interfaces.ITransactionManager method)

 	
 	add() (ZODB.Connection.Connection method)

 	addAfterCommitHook() (transaction.interfaces.ITransaction method)

 	addBeforeCommitHook() (transaction.interfaces.ITransaction method)

B

 	
 	begin() (transaction.interfaces.ITransactionManager method)

C

 	
 	cacheDetail() (ZODB.DB method)

 	cacheDetailSize() (ZODB.DB method)

 	cacheExtremeDetail() (ZODB.DB method)

 	cacheGC() (ZODB.Connection.Connection method)

 	cacheMinimize() (ZODB.Connection.Connection method)

 	(ZODB.DB method)

 	cacheSize() (ZODB.DB method)

 	
 	close() (ZODB.Connection.Connection method)

 	(ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

 	commit() (transaction.interfaces.ITransaction method)

 	(transaction.interfaces.ITransactionManager method)

 	Connection (class in ZODB.Connection)

 	connection() (in module ZODB)

 	connectionDebugInfo() (ZODB.DB method)

D

 	
 	data (ZODB.interfaces.IStorageRecordInformation attribute)

 	data_txn (ZODB.interfaces.IStorageRecordInformation attribute)

 	databaseFromFile() (in module ZODB.config)

 	databaseFromString() (in module ZODB.config)

 	databaseFromURL() (in module ZODB.config)

 	day() (ZODB.TimeStamp.TimeStamp method)

 	
 	DB (class in ZODB)

 	DB()

 	db() (ZODB.Connection.Connection method)

 	DemoStorage (class in ZODB.DemoStorage)

 	description (transaction.interfaces.ITransaction attribute)

 	doom() (transaction.interfaces.ITransaction method)

 	(transaction.interfaces.ITransactionManager method)

F

 	
 	FileStorage (class in ZODB.FileStorage.FileStorage)

G

 	
 	get() (transaction.interfaces.ITransactionManager method)

 	(ZODB.Connection.Connection method)

 	get_connection() (ZODB.Connection.Connection method)

 	getAfterCommitHooks() (transaction.interfaces.ITransaction method)

 	getBeforeCommitHooks() (transaction.interfaces.ITransaction method)

 	getCacheSize() (ZODB.DB method)

 	getCacheSizeBytes() (ZODB.DB method)

 	getDebugInfo() (ZODB.Connection.Connection method)

 	
 	getHistoricalCacheSize() (ZODB.DB method)

 	getHistoricalCacheSizeBytes() (ZODB.DB method)

 	getHistoricalPoolSize() (ZODB.DB method)

 	getHistoricalTimeout() (ZODB.DB method)

 	getName() (ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

 	getPoolSize() (ZODB.DB method)

 	getSize() (ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

H

 	
 	history() (ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

 	
 	hour() (ZODB.TimeStamp.TimeStamp method)

I

 	
 	IBlobStorage (ZODB.interfaces interface)

 	IFileStoragePacker (ZODB.FileStorage.interfaces interface)

 	isDoomed() (transaction.interfaces.ITransactionManager method)

 	isReadOnly() (ZODB.Connection.Connection method)

 	(ZODB.interfaces.IStorage method)

 	IStorage (ZODB.interfaces interface)

 	IStorageCurrentRecordIteration (ZODB.interfaces interface)

 	
 	IStorageIteration (ZODB.interfaces interface)

 	IStorageRecordInformation (ZODB.interfaces interface)

 	IStorageTransactionInformation (ZODB.interfaces interface)

 	IStorageUndoable (ZODB.interfaces interface)

 	iterator() (ZODB.interfaces.IStorageIteration method)

 	ITransaction (transaction.interfaces interface)

 	ITransactionManager (transaction.interfaces interface)

L

 	
 	lastTransaction() (ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

 	
 	laterThan() (ZODB.TimeStamp.TimeStamp method)

M

 	
 	MappingStorage (class in ZODB.MappingStorage)

 	
 	minute() (ZODB.TimeStamp.TimeStamp method)

 	month() (ZODB.TimeStamp.TimeStamp method)

N

 	
 	note() (transaction.interfaces.ITransaction method)

O

 	
 	objectCount() (ZODB.DB method)

 	oid (ZODB.interfaces.IStorageRecordInformation attribute)

 	
 	oldstate() (ZODB.Connection.Connection method)

 	onCloseCallback() (ZODB.Connection.Connection method)

 	open() (ZODB.DB method)

P

 	
 	pack() (ZODB.DB method)

 	(ZODB.interfaces.IStorage method)

 	PersistentList() (built-in function)

 	
 	PersistentMapping() (built-in function)

 	pop() (ZODB.DemoStorage.DemoStorage method)

 	push() (ZODB.DemoStorage.DemoStorage method)

R

 	
 	raw() (ZODB.TimeStamp.TimeStamp method)

 	
 	record_iternext() (ZODB.interfaces.IStorageCurrentRecordIteration method)

 	root (ZODB.Connection.Connection attribute)

S

 	
 	savepoint() (transaction.interfaces.ITransaction method)

 	(transaction.interfaces.ITransactionManager method)

 	second() (ZODB.TimeStamp.TimeStamp method)

 	setCacheSize() (ZODB.DB method)

 	setCacheSizeBytes() (ZODB.DB method)

 	setDebugInfo() (ZODB.Connection.Connection method)

 	setExtendedInfo() (transaction.interfaces.ITransaction method)

 	setHistoricalCacheSize() (ZODB.DB method)

 	setHistoricalCacheSizeBytes() (ZODB.DB method)

 	
 	setHistoricalPoolSize() (ZODB.DB method)

 	setHistoricalTimeout() (ZODB.DB method)

 	setPoolSize() (ZODB.DB method)

 	sortKey() (ZODB.interfaces.IStorage method)

 	storage (ZODB.DB attribute)

 	storageFromFile() (in module ZODB.config)

 	storageFromString() (in module ZODB.config)

 	storageFromURL() (in module ZODB.config)

 	supportsUndo() (ZODB.DB method)

 	sync() (ZODB.Connection.Connection method)

T

 	
 	temporaryDirectory() (ZODB.interfaces.IBlobStorage method)

 	tid (ZODB.interfaces.IStorageRecordInformation attribute)

 	(ZODB.interfaces.IStorageTransactionInformation attribute)

 	
 	timeTime() (ZODB.TimeStamp.TimeStamp method)

 	transaction() (ZODB.DB method)

 	transaction_manager (ZODB.Connection.Connection attribute)

U

 	
 	undo() (ZODB.DB method)

 	undoInfo() (ZODB.DB method)

 	(ZODB.interfaces.IStorageUndoable method)

 	
 	undoLog() (ZODB.DB method)

 	(ZODB.interfaces.IStorageUndoable method)

 	undoMultiple() (ZODB.DB method)

 	user (transaction.interfaces.ITransaction attribute)

Y

 	
 	year() (ZODB.TimeStamp.TimeStamp method)

Z

 	
 	ZODB.config (module)

 	
 	ZODB.TimeStamp.TimeStamp (built-in class)

 _static/comment-bright.png

_images/zeo-diagram.png
Atypical Zope system for a four-core server

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 ZODB - a native object database for Python

 		
 Introduction

 		
 Transactions

 		
 Other notable ZODB features

 		
 When should you use ZODB?

 		
 When should you not use ZODB?

 		
 How does ZODB scale?

 		
 ZODB is mature

 		
 Tutorial

 		
 Introduction

 		
 Installation

 		
 Creating Databases

 		
 Storing objects

 		
 Containers and search

 		
 Transactions

 		
 Memory Management

 		
 Summary

 		
 ZODB programming guide

 		
 Installing and running ZODB

 		
 Installation

 		
 Configuration

 		
 Using databases: connections

 		
 Writing persistent objects

 		
 Access and modification

 		
 Rules of persistence

 		
 Properties

 		
 Special attributes

 		
 Object storage and management

 		
 You can’t change your mind in subclassing persistent

 		
 Schema migration

 		
 Object life cycle states and special attributes (advanced)

 		
 Things you can do, but need to carefully consider (advanced)

 		
 Links

 		
 Transactions and concurrency

 		
 Using transactions

 		
 ZODB and atomicity

 		
 Concurrency, threads and processes

 		
 ZODB articles

 		
 Contents

 		
 An overview of the ZODB (by Laurence Rowe)

 		
 Introduction to the ZODB (by Michel Pelletier)

 		
 Advanced ZODB for Python Programmers

 		
 Very old ZODB programming guide

 		
 Using zc.zodbdgc (fix PosKeyError’s)

 		
 Other ZODB Resources

 		
 Conflict Resolution

 		
 Overview

 		
 Caveats and Dangers

 		
 Conflict Resolution Is on the Server

 		
 Ignore self

 		
 Watch Out for Persistent Objects in the State

 		
 Collabortation Diagrams

 		
 Simple fetch, modify, commit

 		
 Participants

 		
 Scenario

 		
 Simple fetch, modify, abort

 		
 Participants

 		
 Scenario

 		
 Rollback of a savepoint

 		
 Participants

 		
 Scenario

 		
 Cross-Database References

 		
 Databases for new objects

 		
 Dissallowing implicit cross-database references

 		
 NOTE

 		
 Event support

 		
 Historical Connections

 		
 Usage

 		
 Configuration

 		
 Invalidations

 		
 Warnings

 		
 Persistent Classes

 		
 Instances of Persistent Classes

 		
 Persistent instances of persistent classes

 		
 Copying

 		
 ZODB Utilities Module

 		
 64-bit integers and strings

 		
 Transaction id generation

 		
 Locking support

 		
 Preconditions

 		
 Developers notes

 		
 Building

 		
 Testing

 		
 Generating docs

 		
 Contributing

 		
 Change History

 		
 5.6.0 (unreleased)

 		
 5.5.1 (2018-10-25)

 		
 5.5.0 (2018-10-13)

 		
 5.4.0 (2018-03-26)

 		
 5.3.0 (2017-08-30)

 		
 5.2.4 (2017-05-17)

 		
 5.2.3 (2017-04-11)

 		
 5.2.2 (2017-04-11)

 		
 5.2.1 (2017-04-08)

 		
 5.2.0 (2017-02-09)

 		
 5.1.1 (2016-11-18)

 		
 5.1.0 (2016-11-17)

 		
 5.0.1 (2016-11-17)

 		
 5.0.0 (2016-09-06)

 		
 5.0.0b1 (2016-08-04)

 		
 5.0.0a6 (2016-07-21)

 		
 5.0.0a5 (2016-07-06)

 		
 5.0.0a4 (2016-07-05)

 		
 5.0.0a3 (2016-07-01)

 		
 5.0.0a2 (2016-07-01)

 		
 5.0.0a1 (2016-06-20)

 		
 4.4.3 (2016-08-04)

 		
 4.4.2 (2016-07-08)

 		
 4.4.1 (2016-07-01)

 		
 4.4.0 (2016-06-30)

 		
 4.3.1 (2016-06-06)

 		
 4.3.0 (2016-05-31)

 		
 4.2.0 (2015-06-02)

 		
 4.2.0b1 (2015-05-22)

 		
 4.1.0 (2015-01-11)

 		
 4.0.1 (2014-07-13)

 		
 4.0.0 (2013-08-18)

 		
 4.0.0b3 (2013-06-11)

 		
 4.0.0b2 (2013-05-14)

 		
 4.0.0b1 (2013-05-10)

 		
 4.0.0a4 (2012-12-17)

 		
 4.0.0a3 (2012-12-01)

 		
 4.0.0a2 (2012-11-13)

 		
 Bugs Fixed

 		
 4.0.0a1 (2012-11-07)

 		
 New Features

 		
 Bugs Fixed

 		
 3.10.5 (2011-11-19)

 		
 Bugs Fixed

 		
 3.10.4 (2011-11-17)

 		
 Bugs Fixed

 		
 3.10.3 (2011-04-12)

 		
 Bugs Fixed

 		
 Performance enhancements

 		
 3.10.2 (2011-02-12)

 		
 Bugs Fixed

 		
 3.10.1 (2010-10-27)

 		
 Bugs Fixed

 		
 3.10.0 (2010-10-08)

 		
 New Features

 		
 Bugs fixed

 		
 3.9.7 (2010-09-28)

 		
 Bugs Fixed

 		
 3.9.6 (2010-09-21)

 		
 Bugs Fixed

 		
 3.9.5 (2010-04-23)

 		
 Bugs Fixed

 		
 3.9.4 (2009-12-14)

 		
 Bugs Fixed

 		
 3.9.3 (2009-10-23)

 		
 Bugs Fixed

 		
 3.9.2 (2009-10-13)

 		
 Bugs Fixed

 		
 3.9.1 (2009-10-01)

 		
 Bugs Fixed

 		
 3.9.0 (2009-09-08)

 		
 New Features (in more or less reverse chronological order)

 		
 Bugs Fixed

 		
 What’s new in ZODB 3.8.0

 		
 General

 		
 ZEO

 		
 Transactions

 		
 Blobs

 		
 BTrees

 		
 What’s new in ZODB3 3.7.0

 		
 Packaging

 		
 Connection management

 		
 BTrees

 		
 Documentation

 		
 IPersistent

 		
 Testing

 		
 Tools

 		
 BTrees

 		
 Connection

 		
 persistent

 		
 After Commit hooks

 		
 What’s new in ZODB3 3.6.2?

 		
 DemoStorage

 		
 Removal of Features Deprecated in ZODB 3.4

 		
 Persistent

 		
 Commit hooks

 		
 Connection management

 		
 ZEO

 		
 BaseStorage

 		
 Multidatabase

 		
 PersistentMapping

 		
 Tools

 		
 BTrees

 		
 ZopeUndo

 		
 Connection

 		
 Documentation

 		
 Development

 		
 transact

 		
 What’s new in ZODB3 3.5.1?

 		
 Build

 		
 ZopeUndo

 		
 What’s new in ZODB3 3.5.0?

 		
 Savepoints

 		
 ZEO client cache

 		
 Subtransactions are deprecated

 		
 Multi-database

 		
 Tools

 		
 Windows

 		
 ThreadedAsync.LoopCallback

 		
 FileStorage

 		
 BTrees

 		
 What’s new in ZODB3 3.4.1?

 		
 Savepoints

 		
 ZEO client cache

 		
 Subtransactions

 		
 FileStorage

 		
 ThreadedAsync.LoopCallback

 		
 Windows

 		
 Tools

 		
 DemoStorage

 		
 BTrees

 		
 What’s new in ZODB3 3.4?

 		
 Connection, DB

 		
 Development

 		
 Error reporting

 		
 Tests

 		
 What’s new in ZODB3 3.4b1?

 		
 transaction

 		
 Support for ZODB4 savepoint-aware data managers has been dropped

 		
 ZEO

 		
 ZEO on Windows

 		
 Tools

 		
 FileStorage

 		
 ZConfig

 		
 DemoStorage

 		
 BaseStorage

 		
 Tests

 		
 ZApplication

 		
 What’s new in ZODB3 3.4a1?

 		
 transaction

 		
 DB

 		
 ZEO compatibility

 		
 BTrees

 		
 FileStorage

 		
 Tools

 		
 fsIndex

 		
 What’s new in ZODB3 3.3.1?

 		
 Tests

 		
 What’s new in ZODB3 3.3.1c1?

 		
 BTrees

 		
 ZEO

 		
 ZEO protocol and compatibility

 		
 FileStorage

 		
 Pickle (in-memory Connection) Cache

 		
 PersistentMapping and PersistentList

 		
 BTrees

 		
 Tools

 		
 fsIndex

 		
 What’s new in ZODB3 3.3.1a1?

 		
 ZEO client cache

 		
 ZEO

 		
 persistent

 		
 ConflictError

 		
 FileStorage

 		
 Install

 		
 Tools

 		
 What’s new in ZODB3 3.3?

 		
 ZEO

 		
 ZODB/component.xml

 		
 transaction

 		
 Connection

 		
 FileStorage

 		
 What’s new in ZODB3 3.3 release candidate 1?

 		
 Connection

 		
 transaction

 		
 BTrees

 		
 POSException

 		
 ConflictError

 		
 Tools

 		
 What’s new in ZODB3 3.3 beta 2

 		
 Transaction Managers

 		
 Storages

 		
 Tools

 		
 Test suite

 		
 What’s new in ZODB3 3.3 beta 1

 		
 BTrees

 		
 ZODB

 		
 What’s new in ZODB3 3.3 alpha 3

 		
 transaction

 		
 persistent

 		
 ZODB

 		
 ZEO

 		
 zdaemon

 		
 zLOG

 		
 ZConfig

 		
 Miscellaneous

 		
 What’s new in ZODB3 3.3 alpha 2

 		
 Multi-version concurrency control

 		
 ZEO

 		
 Miscellaneous

 		
 What’s new in ZODB3 3.3 alpha 1

 		
 New features of Persistence

 		
 New features in BTrees

 		
 Other improvements

 		
 What’s new in ZODB3 3.2

 		
 What’s new in ZODB3 3.2 release candidate 1

 		
 What’s new in ZODB3 3.2 beta 3

 		
 What’s new in ZODB3 3.2 beta 2

 		
 What’s new in ZODB3 3.2 beta 1

 		
 ZODB

 		
 ZConfig

 		
 ZEO & zdaemon

 		
 Storages

 		
 BTrees

 		
 Tools

 		
 What’s new in ZODB3 3.2 alpha 1

 		
 ZODB

 		
 ZEO

 		
 BTrees

 		
 Installation

 		
 Storages

 		
 Misc

 		
 What’s new in ZODB3 3.1.4?

 		
 What’s new in ZODB3 3.1.3?

 		
 What’s new in ZODB3 3.1.2 final?

 		
 What’s new in ZODB3 3.1.2 beta 2?

 		
 What’s new in ZODB3 3.1.2 beta 1?

 		
 ZODB

 		
 ZEO

 		
 Storages

 		
 BTrees

 		
 Other

 		
 Tools

 		
 What’s new in ZODB3 3.1.1 final?

 		
 Tools

 		
 What’s new in ZODB3 3.1.1 beta 2?

 		
 ZEO

 		
 What’s new in ZODB3 3.1.1 beta 1?

 		
 What’s new in ZODB3 3.1 final?

 		
 What’s new in ZODB3 3.1 beta 3?

 		
 What’s new in ZODB3 3.1 beta 2?

 		
 What’s new in ZODB3 3.1 beta 1?

 		
 New ZODB cache

 		
 Storages

 		
 Berkeley Storages

 		
 BTrees

 		
 ZEO

 		
 Other features

 		
 Documentation

 		
 Other bugs fixed

 		
 What’s new in StandaloneZODB 1.0 final?

 		
 What’s new in StandaloneZODB 1.0 c1?

 		
 Reference Documentation

 		
 ZODB APIs

 		
 ZODB module functions

 		
 Databases

 		
 Connections

 		
 TimeStamp (transaction ids)

 		
 Loading configuration

 		
 Storage APIs

 		
 Storage interfaces

 		
 Included storages

 		
 Noteworthy non-included storages

 		
 Transactions

 		
 ITransactionManager

 		
 ITransaction

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/zodb.png

